REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

Université Hassiba Benbouali de Chlef (U.H.B.C) Faculté des Sciences et Sciences de l'Ingénieur

DEPARTEMENT DE MECANIQUE

MEMOIRE DE MAGISTER EN GENIE MECANIQUE

Option : Energétiques

Thème :

SIMULATION NUMERIQUE DE L'ECOULEMENT INTERNE DANS UNE POMPE CENTRIFUGE AVEC LE CFX

Présenté et soutenu par Mr : MESSAOUD Zahi E-mail : zahi_mes @hotmail.com

Devant le jury composé de

Encadreur : Professeur **ABIDAT** Miloud, U STMB Oran Co-encadreur : **FEKAOUNI** Moahmed Faouzi, MACC -UHBC Président : Professeur **LOUKARFI** Larbi,UHBC Examinateur : Professeur **BETTAHAR** Ahmed, UHBC Examinateur : **MERAHI** Leila , MC- USTMBO

Année universitaire : 2007-2008

Remerciement

Je tiens à exprimer, en premier lieu, mes plus vifs remerciements et ma gratitude à mon Directeur de thèse, Monsieur **Abidat Miloud**, professeur à l'Université des Sciences et de la Technologie d'Oran et Directeur du Laboratoire de Mécanique Appliquée LMA, qui a bien voulu m'accueillir dans son laboratoire et qui a assuré la direction scientifique de ce travail. Je remercie pour son attention, ses conseils, ainsi que la confiance qu'il m'a toujours témoignée, je voudrais qu'il trouve ici l'expression de ma gratitude et toute ma sympathie.

Je remercie énormément mon Co-directeur de thèse **Fekaouni Mohamed Faouzi**, MACC à l'Université Hassiba Benbouali de Chlef, d'avoir proposé le sujet, pour son attention, son implication et son entière disponibilité, ainsi que ses précieux conseils malgré ses très occupations.

Je remercie toutes les personnes, qui, de près ou de loin, ont contribué à l'aboutissement de ce travail particulièrement monsieur. **B. Abed** ingénieur de laboratoire hydraulique UHBC,**S.Aek** ingénieur de laboratoire hydraulique de l'USTO. **F.Taher** chef de département outillage, entreprise BCR Oued Rhiou.

Je remercie également ma famille pour leurs conseils et encouragements.

Mes remerciements s'adressent, également, aux membres du jury, qui m'ont fait le très grand honneur de porter un jugement sur notre travail.

Je saisis cette occasion pour remercier les enseignants de la faculté des sciences et sciences de l'ingénieur d'Université Hassiba Benbouali de Chlef.

Enfin, je remercie tous mes amis sans les nommer, car ils se reconnaîtront d'euxmêmes.

Table des matières

Remerciement	i
Table des matières	ii
Liste des figure	vi
Liste des tableaux	ix
Nomenclature	Х
Introduction générale	1
Chapitre 1. Synthèse bibliographique	
1.1 Introduction	3
1.2 Définition et classification des pompes	4
2.1 Turbopompes	5
2.1.1 Pompes centrifuges	5
2.1.2 Pompes hélices (axiale)	5
2.1.3 Pompes hélico-centrifuges	5
2.2 Pompes volumétriques	6
2.3 Mode de fonctionnement	6
2.4 Classification des pompes centrifuges	7
2.5 Domaines d'utilisations	9
1.3 Théorie des pompes centrifuges	9
3.1 Caractéristiques d'une pompe centrifuge	10

	3.1.1 Caractéristique $H(Q)$	10
	3.1.2 Caractéristique $P(Q)$	12
	3.1.3 Caractéristique $\eta(Q)$	13
	3.2 Diagramme des vitesses dans une pompe centrifuge	14
1.4	Théorème unidimensionnel des turbomachines à nombre d'aube infinie	15
	4.1 Fondements de la théorie unidimensionnelle des turbomachines	15
	4.2 Géométrie de l'écoulement du liquide dans la roue	16
	4.3 Equation fondamentale des turbomachines	18
	4.4 Hauteur d'élévation théorique dans le cas d'une roue à nombre d'aubes	19
	infiniment grand	
1.5	Conclusion	20

1.5 Conclusion	
----------------	--

Chapitre 2. Etude expérimentale	
2.1 Introduction	21
2.2 Présentation du diapositif expérimental	21
2.1 But du travail	21
2.2 Description du dispositif	21
2.3 Dispositifs des mesures	23
3.1 Mesure de débit	23
3.2 Variation de la vitesse de rotation	24
3.3 Couple moteur	24
3.4 Hauteur manométrique	25
2.4 Procédure des essais	25
4.1 Manipulation	25
4.2 Points de fonctionnement	26
2.5 Valeurs expérimentales de la pompe TE47	26
2.6 Calcul expérimental de la pompe TE47	27
6.1 Calcul expérimental des $H(Q)$	27
6.2 Calcul expérimental des $Ph(Q)$	28
6.3 Calcul expérimental des $P_m(Q)$	29
6.4 Calcul expérimental des $\eta(Q)$	30
6.5 Groupement des caractéristiques $H(Q)$, $Ph(Q)$, $Pm(Q)$ et $\eta(Q)$	31
6.6 Interprétation des résultats	33
6.7 Comparer les caractéristiques obtenues avec celles du constructeur	33
2.7 Estimation d'erreur expérimentale	35
2.8 Conclusion	36
Chapitre 3. Modélisation des écoulements internes en turbomachines	
3.1 Introduction	37
3.2 Equations générales de base	37
2.1 Equation de continuité et équation dynamique (Navier-Stokes)	37
2.2 Equations sous forme conservative	39
2.3 Equations simplifiées de mouvement	40
2.3.1 Equations d'Euler	40
2.3.2 Equations de l'écoulement incompressible sain	41
2.3.3 Équations liées à l'écoulement potentiel	41

2.3.4 Équations en termes de fonction de courant	42
3.3 Equations particulières pour les turbomachines	42
3.4 Méthodes unidimensionnelles	44
3.5 Méthode Quasi-Tridimensionnelle	45
5.1 Ecoulement Méridien	45
5.1.1 L'équilibre radial simplifié (ERS)	45
5.1.2 Théorie des disques actuateurs	46
5.1.3 Méthode complète Quasi-3D	47
5.2 Ecoulement aube à aube	49
3.6 Méthode tridimensionnelles	51
6.1 Codes Navier-Stokes	52
3.7 Choix de Modèle de turbulence	53
7.1 La décomposition de Reynolds	53
7.2 Modèles De Turbulence	54
7.2.1 Modèle k-ε standard	54
7.2.2 Modèle k-ω standard	56
7.2.2 Modèle RNG $k - \varepsilon$	58
7.3 Modélisation de l'écoulement près des parois	59
3.8 Classification des méthodes de dimensionnement	61
3.9 Conclusion	63
Chapitre 4 : Méthodes numériques	
4.1 Introduction	64
1.1 Méthodes des différences finis	64
1.2 Méthodes des éléments finis	64
1.3 Méthodes des volumes finis	65
4.2 Principe de la méthode des volumes finis	65
2.1 Domaine de calcul (maillage)	65
2.2 Discrétisation des équations gouvernantes	67
4. 3 Couplage Pression-Vitesse	69
3.1 Les fonctions de forme	70
3.2 Les gradients de pression	72

4.4 Forme générale de la propriété Φ utilisée par CFX	72
--	----

4.5 Couplage du système d'équations	74
4.6 Solution des équations dans le module de CFX	75
4.7 Conclusion	76
Chapitre 5 Application de logiciel ANSVS ICEM CEV pour le nomme TEA	7
5.1 Introduction	7
5.2 Dimensionnement et analyse des performances des turbomachines	יי דד
2.1 Problème direct (analyse)	, , 77
2.2 Problème inverse (dimensionnement)	78
2.2 Optimisation	78
5 3 Dimensionnement de la nompe TE47	70
5.5 Dimensionnement de la pompe TE47	81
5.5 Plate forme de la simulation numérique	82
5.1 Création de la géométrie	83
5.2 Maillage de la géométrie	86
5.2 Présentation de la nomme TE47 avec logiciel ANSVS CEX	88
5.3.1 CEX-Pre	88
5.3.2 CEX-Solveur	90
5.3.3 CEX- Solver Manager	91
5.6 Conclusion	92
5.0 Conclusion	
Chapitre 6. Résultats et discussion	
6.1. Introduction	93
6.2. Pompe TE47	93
6.3 Définition physique du domaine de calcul	94
3 .1 Couplage (interface)	94
3.2 Domaine de calcul	95
6.4 Validation de maillage	95
6.5 Evaluation des modèles de turbulence	97
6.6 Exploitation des résultats	98
6.7 Analyse des écoulements internes	100
7.1 Champ de vitesse dans la pompe	101
7.1.1 Evolution en fonction du débit	104
7.1.2 Evolution en fonction de vitesse de rotation	104

7.2 Champ de pressions statique dans la pompe	105
6. 8 Conclusion	107
Conclusion générale	108
Références bibliographiques	110

Liste des tableaux

Chapitre 2. Etude expérimentale

Tableau 2.1 - Caractéristiques fondamentales de la pompe centrifuge à 3000 tr/mn	26
Tableau 2.2 - Caractéristiques fondamentales d'une pompe centrifuge à 2000 tr/mn	27

Chapitre 3. Modélisation des écoulements internes en turbomachines

Tableau 3.1 - Diverses méthodes de résolution de l'écoulement méridien	46
Tableau 3.2 - Méthodes pour la résolution de l'écoulement aube à aube	51
Tableau 3.3 - Constantes du modèle $k - \varepsilon$ standard	56
Tableau 3.4 - Constantes du modèle $k - \omega$ standard	59
Tableau 3.5- Constantes du modèle RNG $k - \varepsilon$ standard	60

Chapitre 5. Application de logiciel ANSYS ICEM-CFX pour la pompe TE47

Tableau 5.1- Cahier des charges de la pompe	80
Tableau 5.2- Caractéristiques géométriques de la pompe TE47	81
Tableau 5.3 - Caractéristique du logiciel ANSYS ICEM et ANSYS CFX	83
Tableau 5.4- Les étapes utilisé d'une configuration géométrique (ANSYS ICEM)	85
Tableau 5.5 - Les étapes de génération du maillage	88

Nomenclature

Lettres latines

Symbole	Désignation	Unité
С	Coefficient de débit	[-]
D	Diamètres	[<i>m</i>]
е	Energie Totale	[J/kg]
F	Force	[N]
g	Accélération de la pesanteur	$[m/s^2]$
Н	Hauteur d'élévation	[<i>m</i>]
H_{th}	Hauteur théorique à nombre d'aubes fini	[<i>m</i>]
$H_{th\infty}$	Hauteur théorique à nombre d'aubes infiniment grand	[<i>m</i>]
h	Hauteur manomètre	[<i>m</i>]
h	Enthalpie	[J/kg]
Ι	Rothalpie	[J/kg]
Κ	Conductivité thermique	$\left[w m^2 / k \right]$
K_u	Moment cinétique	[N.m]
k	Énergie cinétique turbulente	[J.kg-1]
М	Nombre de Mach	[-]
М	Couple	[N.m]
n	Vitesse de rotation de la roue	[<i>tr</i> /min]
\mathbf{n}_1 , \mathbf{n}_2	Vitesse de rotation à deux configuration (3000 et 2000)	[<i>tr</i> /min]
n _{sQ}	Vitesse spécifique	[<i>tr</i> / min]
р	Pression	[bar]
p_{0}	Pression totale	[bar]
Р	Puissance	[W]
Q	Débit volumique	$[m^3/s]$
Q^{*}	Une valeur de débit	$[m^3/s]$
q_V	Débit volumique	$[m^3/s]$
q_m	Débit massique	[kg / s]
r	Rayon	[<i>m</i>]
S	Surface de l'aube	$[m^2]$
t	Temps	[<i>s</i>]
I 7	Vitesse d'entraînement	[m/s]
U V	Vitesse absolue	[m/s]
v W	Vitesse relative	[m/s]
**		_

Lettres grecques

Symbole	Désignation	Unité
ρ	Masse volumique	$[kg/m^3]$
3	Taux de dissipation de l'énergie cinétique turbulente	[W/kg]
Γ	coefficient de diffusion	[-]
Φ	Grandeur quelconque	[-]
φ	Fonction potentiel	$[m^2/s]$
$\dot{\gamma}$	Coefficient de viscosité cinématique	$[m^2/s]$
η	Rendement	[%]
α	Angle de la vitesse absolue	[°]
β	Angle de la vitesse relative	[°]
Δ	Variation	[-]
Ω	Vitesse angulaire	[rad/s]
σκ , σε	Constante du modèle k- ϵ	[-]
μ	Viscosité dynamique	[Pa.s]
$\mu_{\it eff}$	Viscosité effective	[Pa.s]
ν	Viscosité cinématique moléculaire	$[m^2/s]$
Ψ	Fonction de courant	$[m^2/s]$

Indices

Symbole	Désignation
am,av	Amont, aval
1,2	Entrée et sortie
x,y,z	Coordonnées cartésiennes
r,θ,z	Coordonnées cylindriques
0	Vieux niveau de temps
i	Numéro de position
i,j,k	Direction de projection
ip	Indice du point d'intégration

Liste des figures

Chapitre 1. Synthèse bibliographique

Figure 1.1- Quelques types des roues de turbopompe	5
Figure 1.2- Schéma d'une pompe centrifuge	6
Figure 1.3- Différentes types des roues	7
Figure 1.4- Principe de mesure de la caractéristique $H(Q)$	10
Figure 1.5- Caractéristique de la hauteur	12
Figure 1.6- Caractéristique $P(Q)$ d'une pompe centrifuge	13
Figure 1.7- Caractéristiques des rendements $\eta(Q)$	14
Figure 1.8- Diagramme des vitesses pour une roue de pompe centrifuge	14
Figure 1.9- Triangle de vitesse	15
Figure 1.10- Ecoulement dans la roue d'une pompe centrifuge	16
Figure 1.11 Triangle des vitesses	17

Chapitre 2. Etude expérimentale

Figure 2.1- Dispositif de banc d'essai à un étage(TE 47). Laboratoire	22
d'hydraulique, Université Hassiba Benbouali de Chlef (UHBC)	
Figure 2.2- Schéma d'installation du banc d'essai TE47	23
Figure 2. 3- Moteur électrique de la pompe accroché au dynamomètre [UHBC]	24
Figure 2.4- Courbes expérimentales de la Hauteur en fonction de débit pour n_1 et n_2	28
Figure 2.5- Courbes expérimentales de la puissance hydraulique en fonction de	
débit pour n_1 et n_2	
Figure 2.6- Courbes expérimentales de la puissance moteur en fonction de	29
débit pour n_1 et n_2	
Figure 2.7- Courbes expérimentales du rendement en fonction de débit pour n_1 et n_2	30
Figure 2.8- Courbes des résultats expérimentaux des caractéristiques de la pompe pour n_1	32
Figure 2.9- Courbes des résultats expérimentaux des caractéristiques de la pompe pour n_2	32
Figure 2.10- Courbes de comparaison des hauteurs-débit de la pompe pour n_1	34
Figure 2.11- Courbes de comparaison des hauteurs-débit de la pompe pour n_2	34

Chapitre 3. Modélisation des écoulements internes en turbomachines

Figure 3.1- Modèle de l'écoulement à trois zones	40
Figure 3.2- Surfaces de courant au sein d'une turbomachine	43
Figure 3.3- Lignes de courant dans le repère absolu	44
Figure 3.4- Evolution axiale des caractéristiques dans la théorie des disques actuateurs	46
Figure 3.5- Résolution des équations de Navier-Stokes. Modélisation de la turbulence	52
Figure 3.6- Mailles en 2D (prismatique) près de la paroi	60
Figure 3.7- Organisation de la démarche intégrale de conception	62

Chapitre 4. Méthodes numériques

Figure 4.1 - Volume de contrôle dans un maillage tridimensionnel non orthogonal	66
Figure 4.2 - Point d'intégration dans un élément d'un volume de contrôle	68
Figure 4.3 - Détermination des positions de nœuds dans un élément héxaédral	70
Figure 4.4 - Organigramme de calcul du code ANSYS CFX	75

Chapitre 5. Application de Logiciel ANSYS ICEM-CFX pour la pompe TE47

Figure 5.1- Roue de la pompe TE47	81
Figure 5.2- Coupe roue- volute de la pompe TE47	81
Figure 5.3- Plateforme de la simulation numérique	82
Figure 5.4- Les outils utilisé pour une configuration géométrique (ANSYS ICEM)	83
Figure 5.5- Vue 3D roue + couvert de roue	85
Figure 5.6- Vue 3D de la pompe TE47 (roue + volute)	85
Figure 5.7- Maille tétraédrique	86
Figure 5.8- Couche de la maille prismatique	86
Figure 5.9- Méthode utilisé pour générer le maillage de la pompe TE 47	88
Figure 5.10- Géométrie importée par le module CFX-Pre	89
Figure 5.11- CFX- Solver Manager	90
Figure 5.12- Lancement d'analyse du problème et Contrôle de convergence par	91
le Solveur	
Figure 5.13- Iso-vitesse réalisée par le CFX-Post.	92

Chapitre 6. Résultats et discutions

Figure 6.1- Définition du domaine de calcul de la Pompe TE493

Figure 6.2- Maillage de calcul a)222789, b) 229264 éléments	96
Figure 6.3- Influence de la taille de maillage. Courbes hauteur-débit	96
Figure 6.4 - Influence du modèle de turbulence sur la hauteur de la pompeTE47	98
Figure 6.5- Caractéristiques hauteur – débit Pompe TE47 pour n_1 = 3000(tr /mn).	99
Résultats Comparatifs entre la simulation et expérimental	99
Figure 6.6 - Caractéristiques hauteur – débit Pompe TE47 pour $n_2 = 2000(tr /mn)$.	99
Résultats Comparatifs entre la simulation et expérimental.	
Figure 6.7- Plan moyen d'étude. Pompe TE47	101
Figure 6.8.a- Vecteurs vitesse pompeTE47 ($Qn = 15, 2l/s$)	101
Figure 6.8.b- Vecteurs vitesse pompe TE47 ($Q=0$, 68 l/s)	102
Figure 6.8.c- Vecteurs vitesse pompe TE47 ($Q=1,9l/s$)	102
Figure 6.9.a- Iso-vitesse pompe TE47 ($Q=1,9l/s$)	103
Figure 6.9.b- Iso-vitesse pompe TE47 ($Qn = 1,52l/s$)	103
Figure 6.9.c- Iso-vitesse pompe TE47 ($Q = 0.68l/s$)	104
Figure 6.10 - Vecteurs vitesse à deux vitesses de rotation pour n_1 et n_2	105
Figure 6.11.a- Pression statique pompe TE47 ($Q = 1,9l/s$)	105
Figure 6.11.b- Pression statique pompe TE47 ($Qn = 1,52l/s$)	106
Figure 6.11.c- Pression statique pompe TE47 ($Q = 0$, 68 l/s)	106

Introduction générale

L'eau a eu toujours de l'importance dans la vie (...est fait de l'eau toute chose vivante... « verset 30 Al-anbiya »), elle a incité l'homme à réaliser des machines qui permettaient son extraction, sa transformation et son transfert.

L'Algérie possède de grandes ressources hydrauliques (oueds, nappes phréatiques, mer,...) qui offrent de multiples possibilités d'utilisation (industrie, hydroélectricité, irrigation, eau potable, tourisme, loisir, ...). Elle doit également faire face à une consommation d'eau annuelle croissante, pour ses différents besoins.

L'exploitation de ces ressources nécessite aujourd'hui des installations de grande taille, pour l'extraction, la transformation et le transfert des eaux de différent point, dans les installations industrielles, l'élément le plus intéressant est la pompe d'où notre approche pour les écoulements internes dans une pompe centrifuge.

La recherche sur les fluides et plus particulièrement sur les écoulements incompressibles a pris un grand essor sur le plan expérimental et numérique.

L'étude de la simulation numérique de l'écoulement interne dans une pompe centrifuge avec le CFX, nous parait être un sujet d'intérêt certain pour un mémoire de magister.

Ce mémoire est constitué, outre ce chapitre introductif, la conclusion générale et de 6 chapitres principaux.

- Le premier chapitre contient une synthèse bibliographique sur les turbomachines et les pompes centrifuges, leur principe de fonctionnement, et la théorie des pompes centrifuges.
- Le deuxième chapitre est consacré à l'étude expérimentale sur un banc d'essai de la pompe centrifuge de type TE 47, disponible au laboratoire de la faculté des sciences et Sciences de l'ingénieur (U.H.B.C) et l'Université des Sciences et de la Technologie d'Oran(U.S.T.O).
- Le troisième chapitre décrit, la modélisation des écoulements internes dans les turbomachines. Après avoir exposé les équations générales régissant ces écoulements,

on présente la méthode unidimensionnel et le modèle quasi-tridimensionnel décomposant l'écoulement tridimensionnel en deux écoulements bidimensionnels, l'une aube à aube et l'autre méridien, ainsi que les méthodes de résolution de ces derniers. Nous portons enfin notre attention sur la méthode tridimensionnel de l'écoulement interne qui se base sur la technique de la CFD qui constitue notre centre d'intérêt et qu'on va la détailler par la suite.

- Le quatrième chapitre est consacré aux méthodes numériques où nous présentons la méthode des volumes finis utilisée pour la résolution des équations de turbomachine (Equations de Navier Stokes et équation de continuité) y compris l'algorithme qui traite le couplage pression-vitesse dans les équations de Navier Stokes implanter dans le code de calcul CFX.
- Le cinquième chapitre se focalise sur la démarche à suivre pour tracer et mailler la géométrie à étudier (pompe TE 47) on utilise le logiciels ANSYS ICEM et on exporter vers le logiciel de simulation ANSYS CFX afin de définir le domaine physique.
- Dans le dernier chapitre, les résultats de la simulation numérique du domaine physique (roue-volute) de la pompe TE47 seront présentées et comparés aux résultats expérimentaux. Enfin nous analyserons les différents champs de vitesses et de pressions développés dans la pompe.

6.8 Conclusion

Nous avons étudié dans cette partie, les performances de la pompe TE 47. Les résultats obtenus à travers la simulation numérique nous ont permis de tirer les conclusions suivantes :

- Les courbes numériques et expérimentales de hauteur montrent une allure très satisfaisante selon la littérature des turbomachines, typique d'une pompe bien dimensionnée.
- En outre nous avons remarqué que le code de calcul utilisé CFX, peut être considéré comme un véritable laboratoire virtuel utilisé pour analyser les écoulements internes et l'étude les performances des pompes centrifuges. Cependant la validation expérimentale reste l'élément indispensable pour tester nos modèles numériques utilisés et la fiabilité des conditions aux limites choisies.

Conclusion générale

Le travail présenté dans ce mémoire, porte sur l'étude des écoulements internes dans une pompe centrifuge de type TE47, comme il montre l'intérêt d'utiliser des codes de calcul pour évaluer les performances globales et permet d'avoir un aspect critique sur la structure de l'écoulement de la machine.

Nous avons mené en premier lieu une synthèse bibliographique très utile à la compréhension de la théorie de l'écoulement dans les turbomachines.

En seconde lieu, l'étude expérimentale a permis d'obtenir les courbes caractéristiques de performance de la pompe TE47 (H(Q), Ph(Q), Pm(Q) et $\eta(Q)$) pour deux vitesses de rotations (n_1 = 3000tr/mn et n_2 =2000 tr/mn).

En troisième lieu, l'évolution qu'a subi la démarche de modélisation des turbomachines au cours du temps, permet de développer le projet de dimensionnement sous différentes méthodes. La méthode unidimensionnelle nous donne une idée de la machine et son comportement, la méthode quasi-tridimensionnelle décomposant l'écoulement tridimensionnel en deux écoulements bidimensionnels, l'une aube à aube et autre méridien, enfin la méthode tridimensionnel, en généralisant la résolution des équations de Navier-Stokes, nous permet de simuler le comportement complexe d'un écoulement réel et visqueux.

En dénier lieu, l'étude de la simulation des écoulements tridimensionnels turbulents dans la pompe, avec le logiciel de CFD dans son niveau le plus élevé, nous ont permis de définir le caractère 3D. La viscosité de l'écoulement, apportant au développeur des informations très précises sur le comportement du fluide à l'intérieur de la machine. D'où on a tiré les conclusions suivantes :

- Au débit nominal la valeur numérique de la hauteur d'élévation très proche que la valeur expérimentale, l'écart est de 0,53 %, sachant que la validité de la plus part des codes des calculs est vérifiée pour des débits nominaux, par contre au débit maximal (Q = 1.9 l/s) et au débit réduit (Q=0.3 l/s) on constate que il y a une différence plus significative de l'écart moyen, 8,24%. Contrairement aux valeurs numériques, les pertes dues aux frottements à l'intérieure de la machine sont plus grandes au débit maximal et diminuent à faible débit, ce qui confirme qu'au débit (Q=0.3 l/s), les courbes se rapprochent.

- Les courbes numériques et expérimentales de la hauteur de la pompe montrent une allure très satisfaisante d'une pompe typique bien dimensionnée.
- Les deux configurations de la vitesse de rotation (n₁ et n₂), montrent que la hauteur de la pompe augmente en fonction de la vitesse de rotation et du débit réduit, en rappelons que cette remarque est observée lors de l'étude expérimentale.
- L'analyse des champs de vitesse relative et pression statique aux différents débits montre une capacité de la simulation numérique à prévoir l'organisation de l'écoulement. Les résultats au débit maximal (Q=1.9 l/s) et au débit nominal (Q=1.52 l/s) montre que le fluide est mieux canalisé dans la roue et la volute, par contre, des variations plus importantes sont observé au débit partiel (Q=0,68 l/s) où la structure de l'écoulement devient chaotique et forme deux fortes zones de recirculation à l'entrée et à la sortie de la pompe. Cette recirculation due aux forces centrifuges liées à la courbure des aubes et à la rotation est très difficile à prendre en considération.

Dans l'ensemble, les résultats des simulations peuvent fournir des renseignements nécessaires pour la mise en place ou l'amélioration des géométries pour la conception, l'analyse et l'optimisation des performances des turbomachines à fluide incompressible.

En perspective et afin d'améliorer notre travail, nous souhaiterions inclure une étude de l'influence de la géométrie de l'aubage et des vitesses de rotation sur les caractéristique de la pompe centrifuge TE47.

Références bibliographiques

[1] Lemasson G., Les machines transformatatrices d'énergie, Tome 2, Delagrave, 1982.

[2] Adamt T., Les Turbopompes, Eyrolles, Paris, 1976.

[3] Gilbert R., Technique de l'ingénieur : mécanique et chaleur, B4-B 470, 1992.

[4] Meiczylaw S., Pompy, Edition Warzawa, 1985.

[5] Enganda A., Eray historical development of the centrifugal impeller. International Gas et Turbine & Aeroengine& exhibition.jun 2-5 Stockholm Sweden,1998.

[6] Comlet R., Mécanique expérimentale des fluide, Tome1, Masson, 1982.

[7] Comlet R., Mécanique expérimentale des fluide, Tome1, Masson, 1982.

[8] Wu C.H., A general theory of three dimensional flow in subsonic and supersonic turbomachine in radial, axial and mixed flow types," NACA TN 2604,1952.

[9] Lewis R. I., Turbomachinery Performance Analysis, ARNOLD, Great Britain, 1996.

[10] Luu T.S., **Viney L.B.**, Inverse problem using S2-S1 approach for th of turbomachines with splitter blades, Revue Française de Mécanique, , France, 1992.

[11] Lewis R. I., "Developments of actuator disc theory for compressible flow through turbomachines," International Journal of Mech. Sci., Vol. 37, N° 10, 1995.

[11] Wislicenus G. F., Fluid Mechanics of Turbomachinery, Dover, New York, 1965.

[12] Noguera R., Contribution à la maîtrise du dimensionnement des turbomachines axiales.Etude des débits partiels et de la cavitation, Th. d'Etat. Paris-VI,1987.

[13] Belamri T., Analyse aube à aube de l'écoulement instationnaire multigrilles par la méthode des singularités - Application aux turbomachines à fluide incompressible. Th. Méc., ENSAM – Paris,1998.

[14] Katsanis T., Computing program for calculating velocities and streamlines on a blade - to-blade surface of a turbomachine, NASA, Technical note, TN-4525, 1968.

[15] Scholz N., Aerodynamik der Schaufelgitter, Band I, Vrelag G. Braun, Karlsruhe (traduit par A. Klein, AGARDograph No. AG 220, 1977),1965.

[16] Gostelow J.P., Turbomachines with splitter blades, Revue Française de Mécanique, n°.3, France, 1984.

[17] Versteeg H., Malalaskara W., An introduction to Computationl fluid dynamics. The finite volume méthode, Longman Scientific&Technical, New York, 1995.

[18] Abidat M., Chen H., Baines N. C and Firth M.R., Design of a Highly Loaded Mixed Flow Turbine Proc, I Mech, E Journ. Power and Energy, 1992, Vol 206, 1992.

[19] Hamel M., Etude des performances d'une volute de turbine radiale ou semi axiale. Thèse de magistère USTO, Oran 2005.

[20] Toufik T., Etude de l'influence de la géométrie de l'aubage et de vitesse de rotation de la roue sur les caractéristiques d'une pompe centrifuge. Thèse de magistère U. H. B.C, 2000.

[21] Miguel A., Méthodologie et optimisation dans la conception et l'analyse des performances des turbomachines à fluide incompressible. Thèse de doctorat ENSAM, Paris ,1999.

[22] Akhrasa A R., Etude de l'interaction roue-diffuseur dans une pompe centrifuge. Thèse de doctorat INSAlyon,2002.

[23] Documentations CFX. 10/ (1) Solver Theory / (2) Turbulence And Near Wall Theory.

[24] Bulletin technique, Bancs d'essais de pompe centrifuge TE47/83, Deltalab 38340 voreppe/France,1985.

SIMULATION NUMERIQUE DE L'ECOULEMENT INTERNE DANS UNE POMPE CENTRIFUGE AVEC LE CFX

Résume: La simulation numérique tend à prendre de plus en plus d'importance dans le développement des projets scientifiques actuels étant moins onéreuse et plus flexible. Cette étude comporte l' analyse bibliographique des travaux antérieurs, l' étude expérimentale sur les caractéristiques des performances d'une pompe centrifuge de type TE47, la mise en œuvre des équations modélisant les écoulements internes en turbomachines, la résolution numérique de ces équations par la méthode des volumes finis, l'application de logiciel ANSYS ICEM pour tracer et mailler la pompeTE47, l'étude tridimensionnelle de l'ensemble roue-volute à l'aide de logiciels ANSYS CFX et enfin comparaison aux résultats expérimentaux . La simulation répond aux problèmes de tracé (design) des machines et aux soucis des constructeurs de disposer de méthodes rapides, fiables et suffisamment précises.

Ce travail a atteint l'objectif de montrer le lien étroit entre les études expérimentale et numérique, analyser les champs des écoulements internes en turbomachines, servir de base pour améliorer les géométries et l'optimisation des performances des turbomachines à fluide incompressible et avoir une nouvelle vision sur les pompes.

Mots-clefs: Simulation numérique, logiciel ICEM, logiciel CFX, écoulements incompressible, pompe centrifuge TE47.

NUMERICAL SIMULATION OF THE INTERNAL FLOW IN A CENTRIFUGAL PUMP WITH CFX

Abstract: Numerical simulation tends to take more and more importance in the development of the current scientific projects is less expensive and more flexible. This study comprises the bibliographical analysis of former work, the study experimental on the characteristics of the performances of a pump centrifuges of type TE47, the implementation of the equations modelling the internal flows out of turbomachines, the numerical solution of these equations by the method of finite volume, the application of ANSYS ICEM software to draw and the mesh pompeTE47, the three-dimensional study of group impeller-volute pump with the aid of software ANSYS CFX and finally compared in experimental results. Simulations responds to the problems of design in the pump industry, the main difficulty of manufacturers is to have fast, reliable and accurate methods.

This work has achieved the goal of showing the link between the numerical and experimental study, analyze the fields of internal flows turbomachines, serve as a basis for improving the geometry and performance optimization of turbomachinery fluid and incompressible to have a new vision on pumps.

Keywords: Numerical simulation, software ICEM, software CFX, incompressible flow, centrifugal pump TE47