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Résumé 

Utiliser le spin d’un électron comme « bit quantique » (formant ainsi un qubit) 

pour manipuler et stocker l’information quantique représente l’une des options 

les plus prometteuses de la nanotechnologie à envisager pour la réalisation d’un 

nanoprocesseur quantique. Le domaine qubit de spin a connu ces dernières 

années un essor prodigieux. Ainsi lorsqu’un électron est piégé dans une boîte 

quantique défini dans une nanostructure, on peut mesurer son spin, le 

manipuler et le faire interagir de manière cohérente avec un autre spin, 

définissant ainsi que le transport de spin. Le chaînon expérimental manquant 

pour compléter les opérations essentielles dans un ordinateur quantique est le 

transport cohérent d’un spin électronique. Il permettra d’envisager la réalisation 

d’ordinateurs quantiques. 

 Nous nous proposons dans ce projet d’étudier le phénomène de transport de 

spin électronique et de l’utilisé le dans la réalisation des ordinateurs quantiques, 

ainsi que dans l'implémentation des algorithmes quantiques. 

 

Summary 

During the past forty years astounding advances have been made in the 

manufacture of computers. The number of atoms needed to represent a bit in 

memory has been decreasing exponentially since 1950. Likewise the numbers 

of transistors per chip, clock speed, and energy dissipated per logical operation 

have all followed their own improving exponential trends. This rate of 

improvement cannot be sustained much longer; at the current rate in the year 

2020 one bit of information will requite only one atom to represent it. The 

problem is that at that size the behaviour of a computer's components will be 

dominated by the principles of quantum physics. 

In our work we talk about the exploitation of the spin transport in 

nanomaterials to realise quantum computer. In addition we simulate some of 

the quantum algorithm to show the differences between the classical computer 

and the quantum one. 
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    A part from the computational power of a quantum computer there is a much more 

banal argument for incorporating quantum mechanics into computer science: Moore’s 

law and the limits of semiconductors technology (we will discuss Moore’s law, 

Computers microarchitectures and the limits of semiconductors technology in the first 

chapter of this thesis “Computers microarchitectures and the limits of semiconductors 

technology”). In 1965 Intel co-founder Gordon Moore observed an exponential growth 

in the number of transistors per square inch on integrated circuit and he predicted that 

this trend would continue. In fact, since then this density has doubled approximately 

every 18 months. If this trend continues then around the year 2020 the components of 

computers are at the atomic scale where quantum effects are dominant. We have thus 

to inevitably cope with these effects, and we can either try to eliminate them as long as 

this is possible and keep on doing classical computing or we can at some point try to 

make use of them and start doing quantum computing. 

    Quantum mechanics is one of the cornerstones of modern physics. It governs the 

behaviour and the properties of matter in a fundamental way, in particular on the 

microscopic scale of atoms and molecules. Hence, what we may call a classical 

computer, is itself following the rules of quantum mechanics. However, such devices 

are not quantum computers in the sense that all the inside information processing can 

perfectly be described within classical information theory. In fact, we do not need 

quantum mechanics in order to explain how the bits inside a classical computer evolve. 

The reason for this is that the architecture of classical computers does not make use of 

one of the most fundamental features of quantum mechanics, namely the possibility of 

superpositions. (We will discuss the superposition principal and other principals of 

quantum mechanics in the second chapter of this thesis “Notions of quantum 

mechanics”). Throughout the entire processing of any program on a classical 

computer, each of the involved bits takes on either the value zero or one. Quantum 

mechanics, however, would in addition allow superpositions of zeros and ones, that is, 

bits – now called qubits (quantum-bits) – which are somehow in the state zero and one 

at the same time. Computing devices which exploit this possibility, and with that all 

the essential features of quantum mechanics, are called quantum computers. Since they 

have an additional capability they are at least as powerful as classical computers: every 
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problem that can be solved on a classical computer can be handled by a quantum 

computer just as well. The converse, however, is also true since the dynamics of 

quantum systems is governed by linear differential equations, which can in turn be 

solved (at least approximately) on a classical computer. Hence, classical and quantum 

computers could in principle emulate each other and quantum computers are thus no 

hypercomputers. So why quantum computing? And if there is any reason, why not just 

simulate these devices on a classical computer? To answer theses questions we must 

talk about the roles of quantum computers. 

    One reason for aiming at building quantum computers is that they will solve certain 

types of problems faster than any (present or future) classical computer – it seems that 

the border between easy and hard problems is different for quantum computers than it 

is for their classical counterparts. Here easy means that the time for solving the 

problem grows polynomially with the length of the input data (like for the problem of 

multiplying two numbers), whereas hard problems are those for which the required 

time grows exponentially. Prominent examples for hard problems are the travelling 

salesman problem, the graph isomorphism problem, and the problem of factoring a 

number into primes. For the latter it was, to the surprise of all, shown by Peter Shor in 

1994 that it could efficiently be solved by a quantum computer in polynomial time. 

Hence, a problem which is hard for any classical computer becomes easy for quantum 

computers. Shor’s result gets even more brisance from the fact that the security of 

public key encryption, i.e., the security of home banking and any other information 

transfer via the internet, is heavily based on the fact that factoring is a hard problem. 

    One might think that the cost for the gained exponential speedup in quantum 

computers is an exponential increase of the required accuracy for all the involved 

operations. This would then be reminiscent of the drawback of analog computers. 

Fortunately, this is not the case and a constant accuracy is sufficient. However, 

achieving this “constant” is without doubt experimentally highly challenging. 

    Moreover, we know that nature provides many fascinating collective quantum 

phenomena like superconductivity, magnetism and Bose-Einstein condensation. 

Although all properties of matter are described by and can in principle be determined 

from the laws of quantum mechanics. Physicists have very often serious difficulties to 
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understand them in detail and to predict them by starting from fundamental rules and 

first principles. One reason for these difficulties is the fact that the number of 

parameters needed to describe a many-particle quantum system grows exponentially 

with the number of particles. Hence, comparing a theoretical model for the behaviour 

of more than, say, thirty particles with experimental reality is not possible by 

simulating the theoretical model numerically on a classical computer without making 

serious simplifications. 

    When thinking about this problem of simulating quantum systems on classical 

computers Richard Feynman came in the early eighties to the conclusion that such a 

classical simulation typically suffers from an exponential slowdown, whereas another 

quantum system could in principle do the simulation efficiently with bearable 

overhead. 

    In this way a quantum computer operated as a quantum simulator could be used as a 

link between theoretical models which are formulated on a fundamental level and 

experimental observations. Similar to Shor’s algorithm a quantum simulator such as 

Deutsh algorithm, Deutch Joza algorithm, Simon’s algorithm, and Grover’s algorithm, 

would yield a quadratic to exponential speedup compared to a classical computer (we 

will discuss these quantum algorithms in the chapter four of this thesis “Quantum 

computers”). An important difference between these two applications is, however, that 

a useful Shor-algorithm quantum computer requires thousands of qubits whereas a few 

tens of qubits could already be useful for the simulation of quantum systems. 

    However, the crucial question remain is how can a quantum computer be built? On 

the one hand, progress has been made in recent years in the experimental controlled 

manipulation of very small quantum systems that can be not called other than 

spectacular, in a way that was not imaginable not long ago. Quantum gates have been 

implemented in the base spin manipulation, and with nuclear magnetic resonance 

techniques, even small quantum algorithms have been realized.Moreover, completely 

new ways of controlling individual quantum systems will have to be devised, 

potentially combining different ideas from quantum optics and solid state physics. Any 

such implementation will eventually have live up to some requirements that have 

maybe most distinctly been formulated by DiVincenzo as generic requirements in 
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practical quantum computation (we will discuss the DiVincenzo criteria and the 

implementation of quantum computers in the third chapter “The use of spin in 

quantum computers”). 

Besides the quantum computer with its mentioned applications quantum information 

science yields a couple of other useful applications which might be easier to realize. 

The best example is quantum cryptography which enables one to transmit information 

with “the security of nature’s laws”. However, small building blocks of a quantum 

computer, i.e., small quantum circuits may be useful as well. One potential application 

is for instance in precision measurements like in atomic clocks. We also will discuss 

the link between spin transport and the use of the spin in the build of quantum 

computers. 
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I-1- Introduction: 

In the last three decades the world of computers and especially that of microprocessors 

has witnessed an exponential growth in both productivity and performance. The 

integrated circuit industry has followed a steady path of constantly shrinking devices 

geometries and increased functionality that larger chips provide. The technology that 

enabled this exponential growth is a combination of advancements in process technology, 

microarchitecture, architecture and design and development tools. Together, these 

performances and functionality improvements have resulted in a history of new 

technology generations every two to three years, commonly referred to as 'Moore Law'. 

Each new generation has approximately doubled logic circuit density and increased 

performance by about 40%. This chapter analyses some of the microarchitectural 

techniques that are typical for contemporary high-performance microprocessors.  

 

I-2- Evolution of semiconductor technology: 

During the past 40 years the semiconductor industry has distinguished it self both by rapid 

space of performance improvements in its products, and by a steady path of constantly 

shrinking device geometries and increasing chip size. 

Technology scaling has been the primary driver behind improving the performance 

characteristics of integrated circuits's (IC). The speed and integration density of IC's have 

dramatically improved. Exploitation of a billion transistor capacity of a single 

microprocessor requires new system paradigms and significant improvements to design 

productivity. Structural complexity and functional diversity of such computers are the 

challenges for the design teams. Structural complexity can be increased by having more 

productive design methods and by putting more resources in design work. Functional 

diversity of information technology products will increase too. The next generation 

products will be based on computers, but the full exploitation of silicon capacity will 

require drastical improvements in design productivity and system architecture. 

Together these performances and functionality improvements are generally identified in a 

history of new technology generations with the growth of the microprocessor, which is 
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frequently described as a 'Moore's Law'. Moore's Law states that each new generation has 

approximately doubled logic circuit density and increased performance by 40% while 

quadrupling memory capacity. According to International Technology Roadmap for 

Semiconductor (IRTS) projections, the number of transistors per chip and the local clock 

frequencies for high performance microprocessors will continue to grow exponentially in 

the next 10 years too. The 2003 IRTS predicts that by 2014 microprocessor gate length 

will have been 35 nm, voltage will drop to 0.4V, and clock frequency will rise to almost 

30 GHz. Figure I.1 presents some of these predictions. As a consequence, experts expect 

that in the next 10 years the transistor count for microprocessors will increase to 1 billion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I-3- Moore's Law 

The pace of IC technology over the past forty years has been well characterized by 

Moore's Law [1]. It was noted in 1965 by Gordon Moore, research director of Fairchild 

Semiconductor, that the integration density of the first commercial integrated circuit was 

doubled approximately every year. From the chronology in Table I-1, we see that the first 

microchip was invented in 1959. Thus, the complexity was one transistor. In 1964, 

 
 

Figure I-1:  Trends in future size over time [1] 
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complexity grew up to 32 transistors, and in 1965, a chip in the Fairchild R&D lab had 64 

transistors. Moore predicted that chip complexity would be doubled every year based on 

data for 1959, 1964, and 1965. 

 

 

 

 

 

 

 

 

 

In 1975, the prediction was revised to suggest a new, slower rate of growth. Doubling of 

the IC transistors count every two years. This trend of exponential growth of IC 

complexity is commonly referred to as Moore's Law I. However some people say that 

Moore's Law complexity predicts a doubling every 18 months. 

As a result, since the beginning of commercial production of IC's in the early 1960's, 

circuit complexity has risen from a few transistors to hundreds of billion transistors 

functioning together on a single monolithic substrate. Furthermore, Moore's law is 

expected to continue at a comparable pace for at least another decade. 

Memory size has also increased rapidly since 1965, when the PDP-8 came with 4 KB of 

core memory and when an 8 KB system was considered large. In 1981, the IBM PC 

machine was limited to 640 KB memory. By the early 1990's, 4 or 8 MB memories for 

PCs were rule, and in 2000, the standard PC memory size grew to 64-128 MB, in 2003 it 

was in the range from 256 up to 512 MB. 

Disk memory has also increased rapidly: from small 32 - 128 kB disks for PDP 8e 

computer in 1970 to 10 MB disk for the IBM XT PC in 1982. From 1991 to 1997, disk 

storage capacity increased by about 60% per year, yielding an eighteen folds increase in 

capacity. In 2001, the standard desktop PC came with a 40 GB hard drive, and in 2003 

year 

Microchip complexly  

transistors 

Moore’s Law 

Complexity: transistors 

1959 1 2
0
=1 

1964 32 2
5
=32 

1965 64 2
6
=64 

1975 64.000 2
16

=64.000 

Table I-1: Complexity of microchip and Moore's law [2] 
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with 120 GB. If Moore's law predicts a doubling of microprocessor complexity every two 

years, disk storage capacity will increase by 2.56 times each two years, faster than 

Moore's Law. 

 

 

 

 

 

 

 

 

 

 

 

Tendencies in capacity and speed increasing for random logic, DRAM, and disk, during 

the past period, are given in Table I-2. 

 

 

 

I-4- Limits of technology scaling 

Improved microprocessor performance results largely from technology scaling, which lets 

designers increase the level of integration at higher clock frequencies. While current 

implementations use feature sizes of about 0.25 micron, devices with feature sizes smaller 

Table I-2: Capacity and speed increasing during the past period [2] 

Figure I-2: Evolution of transistor count of CPU/microprocessor and memory ICs [1] 
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than 0.1 micron are expected in the next few years. Meanwhile, device propagation delay 

(under constant field assumptions) improves linearly with the decrease in feature size. 

Nevertheless, designers face several major technical challenges in the deep-submicron 

era. The most important is that interconnect delay (especially global interconnect delay) 

does not scale with feature size. If all three dimensions of a wire are scaled down by the 

same scaling factor, the interconnect delay remains roughly unchanged. Thus, the 

interconnect delay decreases far less rapidly than the gate delay and proves more 

significant in the deep-submicron region.  

In an effort to minimize interconnect resistance, modern designs scale interconnects 

height at a much slower pace than interconnect width. Consequently, the aspect ratio 

(T/Win Figure I-3) should rise gradually from 1.8 at present to 3.0 by the year 2012. This 

shift reduces wire resistance but also increases the effects of line coupling, from 20% at 

0.7 micron to 80% at 0.18 micron. Cross talk between adjacent wires will pose a more 

serious problem, and wire congestion will ultimately determine interconnect delay and 

power dissipation. Implementations that use more devices in critical paths yet offer less 

wire congestion and shorter interconnect delays may be preferable to older 

implementations that simply focus on reducing the number of gate delays. 

 

 

 

 

 

 

 

 

 

 

 
 

Figure I-3: Interconnect capacitances [6] 
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Feature sizes below 0.1 micron lead to other technical challenges. High-performance 

processors need special cooling techniques, which could consume as much as 175 W of 

power. Enabling GHz signals to travel into and out of the chips requires new circuit 

designs and algorithms. Preventing latch-up and reducing noise coupling may require new 

materials such as silicon-on-insulator. Similarly, reducing cross talk and DRAM leakage 

may require low k “dielectric insulator” as well as high k materials, respectively. These 

challenges demand that designers provide whole system solutions instead of treating logic 

design, circuit design, and packaging as independent phases of the design process. 

 

I-5- Limits in frequency scaling: 

Microprocessor performance has improved by approximately 50% per year for the past 15 

years. This can be attributed to higher clock frequencies, deeper pipelines, and improved 

exploitation of instruction-level parallelism (ILP). In the deep-submicron era, we can 

expect performance improvement to result largely from reducing cycle time at the 

expense of greater power consumption. 

 

I-5-1- Cycle time: 

Processor clock frequencies have increased by approximately 30% per year for the past 

15 years, due partly to faster transistors and partly to fewer logic gates per cycle. 

Traditionally, digital designs have used edge triggered flip-flops extensively. Such a 

system’s cycle time Tc is determined by Tc = Pmax + C, where Pmax is the maximum delay 

required for the combinational logic, and C is the total clock overhead, including setup 

time, clockto-output delay, and clock skew. For high-end server processors, the SIA 

predicts that the clock cycle time will decrease from roughly 16 FO4 (fanout-of-four) 

inverter delays at present to roughly five FO4 inverter delays at 0.05-micron feature size. 

As a result, clock overhead takes a significant fraction of the cycle time, and flip-flop 

clocking systems appear infeasible. Fortunately, a number of circuit techniques can 

improve microprocessor cycle times: 
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• Several new flip-flop structures, such as sense-amplifier-based, hybrid latch, and 

semidynamic flip-flop, have been proposed to lower clock overhead. 

• Asynchronous logic eliminates the need for a global clock. Average latency depends on 

Pmean (average logic delay) instead of Pmax (maximum logic delay), but completion 

detection and data initialization incur significant overhead. 

• Various forms of dynamic logic have been proposed to minimize the effects of clock 

skew. These techniques reduce clock overhead at the expense of power and scalability. 

• Wave pipelining uses Pmin (minimum logic delay) as a storage element to improve cycle 

time. 

We use wave pipelining to illustrate some of the new clocking considerations. For 

memories and other functional blocks that contain regular interconnect structures, wave 

pipelining is an attractive choice. The technique relies on the delay inherent in 

combinatorial logic circuits. Suppose a given logic unit has a maximum interlatch delay 

of Pmax and a corresponding minimum delay of Pmin with clock overhead C. Then the 

fastest achievable cycle time t equals Pmax-Pmin + C. 

As with conventionally clocked systems, system clock rate Tc is the maximum ti over i 

latched stages. Sophisticated tools can ensure balanced path delays and thus improve 

cycle time. In practice, using special tools lets us set Pmin to within about 80% to 90% of 

(Pmax + C). While this would seem to imply clock speedup of more than five times the 

maximum clock using traditional clocking schemes, environmental issues such as process 

variation and temperature gradient across a die restrict realizable clock rate speedup to 

about three times.  Figure I-4 details the register-to-register waveforms of a wave-

pipelined vector multiplier. The achieved rate shown at the bottom of the figure is more 

than three times faster than the traditional rate determined by the latency between the 

multiplier input and output (shown in the top two segments of Figure I-4). 
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Wave pipelining also exemplifies how aggressive new techniques offer architects and 

implementers both benefits and challenges. Although allowing significant clock-rate 

improvements over traditional pipelines, wave pipelines cannot be stalled without losing 

the in-flight computations. Because individual waves in the pipeline exist only by virtue 

of circuit delays, they cannot be controlled between pipeline latches. In the case of wave 

pipelines, architecturally transparent replay buffers can provide the effect of a stall and 

extend the applicability of wave pipelining to applications that require stalling the 

pipeline. Other new techniques may not fit in directly with current architectures and may 

also require special treatment to be generally applicable. 

 

I-6- Limits in low power 

Low power consumption is one of the crucial factors determining the success of personal 

mobile communications and portable computing systems in the fastest growing sectors of 

the consumer electronics market. Mobile computing system and biomedical implantable 

devices are just a few examples of electronic devices whose power consumption is a basic 

 

Figure I-4: Wave pipelined vector multiplication [7] 
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constraint to be met, since their operativity in the time domain depends on limited energy 

storage. 

The electronic devices at the heart of such products need to dissipate low power, in order 

to conserve battery life and meet packaging reliability constraints. Lowering power 

consumption is important not only for lengthening battery life in portable systems, but 

also for improving reliability, and reducing heat-removal cost in high performance 

systems. Consequently, power consumption is a dramatic problem for all integrated 

circuits designed today. 

Low power design in terms of algorithms, architectures, and circuits has received 

significant attention and research input over the last decade. The implementation can be 

categorized into system level, algorithm level, architecture level, circuit level, and 

process/device level.  

The system level is the highest layer which strongly influences power consumption and 

distribution by partitioning system factors. 

The algorithm level is the second level, which defines a detailed implementation outline 

of the required original function, i.e. it determines how to solve the problem and how to 

reduce the original complexity. 

At the architecture level there are still many options and wide freedom in implementation, 

such as, for example, CPU - microprocessor, DSP (Digital Signal Processor), ASIC 

(Application Specific Integrated Circuit) - dedicated hardware logic, reconfigurable logic, 

etc. 

The circuit level is the most detailed implementation layer. This level is explained as a 

module level such as multiplier or memory and basement level like voltage control that 

affects wide range of the chip. 

The process level and the device level are the lowest levels of implementation. This layer 

itself does not have drastic impact directly. However, when it is oriented towards voltage 

reduction, this level plays a very important role in power saving. 

Present day general purpose microprocessor designers are faced with the daunting task of 

reducing power dissipation since power dissipation quickly becomes a bottleneck for 
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future technologies. For all the integrated circuits used in battery-powered portable 

devices, power consumption is the main issue. Furthermore, power consumption is also 

the main issue for high-performance integrated circuit due to heat dissipation. 

Consequently, power consumption is a dramatic problem for all integrated circuits 

designed today. 

 

I-7- Computational integrity 

The last basic trade-off is determining the level of computational integrity. When 

rebooting a personal computer after an application has caused the system to crash, we 

may wonder about the application or the system or both. However, the observed failure is 

a retrograde problem solved years ago in hardware with the introduction of user and 

system states and corresponding memory protection. In looking ahead to improved 

models of computational integrity, we should consider 

• Reliability, 

• Testability, 

• Serviceability, 

• Process recoverability, and 

• Fail-safe computation. 

Reliability is a characteristic of the implementation media. Circuits and cells may fail, but 

this need not lead immediately to demonstrable faults in the processor. Indeed, smaller 

feature sizes may lead to increasing failures over time resulting from electrostatic 

overstress, and so on. Error correction systems provide an important way to recover from 

certain modes of device failure. In case of transient errors, error detection systems 

coupled with instruction retry are a minimum requirement for enabling correct 

computations. 

Testable designs explicitly include accessibility paths, such as scan paths, that enable 

special validation programs to verify a processor’s correct operation over a broad variety 

of state combinations. Testability is important for continuing test and design validation.  
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Serviceability allows for ready diagnosis of both transient and permanent failures. It 

depends on error detection, error scanning on detection, and error logging. The goal is a 

design that lets us identify degraded paths caused by recoverable but recurring errors. 

Process recoverability includes features for instruction retry, process rollback, and, in 

multiprocessor systems, process migration to another processor. 

Fail-safe computation integrates all the above with environmental considerations such as 

power and temperature. In principle, even power failure should not cause an executing 

process to abort. Using an uninterruptible power supply or some other backup system lets 

us save the system state so that computation can resume when power returns. 

 

I-8- Future Directions in Microprocessor Systems 

Deep-submicron technology allows billions of transistors on a single die, potentially 

running at gigahertz frequencies. According to Semiconductor Industry Association 

projections, the number of transistor per chip and the local clock frequencies for high 

performance microprocessors will continue to grow exponentially in the near future, as it 

is illustrated in Figure I-5. This ensures that future microprocessors will become even 

more complex. 

 

 

As the processor community prepares for a billion transistors on a chip, researchers  

 

Figure I-5: The National Technology Roadmap For semiconductor: a- total transistor 

per chip  b- On-chip local clock [3] 
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One approach is to add more memory (either cache or primary) to the chip, but the 

performances gain from memory alone is limited. Another approach is to increase the 

level of system integration, bringing support functions like graphics accelerators and I/O 

controllers on chip. Although integration lowers system costs and communication latency, 

the overall performance gain to application is again marginal. 

In the sequel we will point to some of the new directions oriented towards 

system/microprocessor performance improvement mainly intended to enhance system/ 

processor's computational capabilities. 

 

I-8-1- Microprocessor today - microprocessor tomorrow 

Microprocessors have gone through significant changes during the last three decades. 

However, the basic computational model has not been changed much. A program consists 

of instructions and data. The instructions are encoded in a specific instruction set 

architecture (ISA). The computational model is still a single instruction stream based on, 

sequential execution model, operating on the architecture states (memory and registers). It 

is a job of the microarchitecture, the logic, and the circuits to carry out this instruction 

stream in the best way.  

Figure I-6-a shows the level of transformation that a problem, initially described in some 

natural languages like English, French or Arabic has to pass through in order to be solved. 

When we say microprocessor today we generally assume the shaded region of Figure I-6-

a, where each microprocessor consists of circuit that implement hardware structure 

(collectively called the microarchitecture) that provide an interface to the software. As it 

can be seen from Figure I-6-a the compiled program uses to tell the microprocessor what 

it (the program) needs to be done, and the microprocessors use to know what it must be 

carried out in behalf of the program. The ISA is implemented by a set of hardware 

structures collectively referred to as the microprocessor's microarchitecture. If we take our 

levels of transformation and include the algorithm and language into microprocessor, the 

microprocessor then becomes the thing that uses device technology to solve the problem 

(Figure I-6-b). 
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I-8-2- Future directions in microarchitectures 

Future microprocessors will be faced with new challenges. Numerous techniques have 

been proposed. Most of them have multiple sequencers, and are capable of processing 

multiple instruction streams. In the sequel, we will discuss some microarchitectural 

techniques that are likely to be used commercially in the near future: 

 

I-8-2-1- Multithreading or multiprocessing:  

The processor is composed as a collection of independent processing elements (PEs), 

each of which executes a separate thread or flow control. By designing the processor as a 

collection of PEs, (a) the number of global wires is reduced, and (b) very little 

communication occurs through global wires. Thus, much of communication occurring in 

the multi- PE processor is local in nature and occurs through short wires. The commonly 

used model for control flow among threads is the parallel threads model. The fork 

instruction specifies the creation of new threads and their starting addresses, while the 

join instruction serves as a synchronizing point and collects the threads. The thread 

sequencing model is illustrated in Figure I-7. 

 

 

 

 

 

Figure I-6: a- The Microprocessor today  b- The Microprocessor tomorrow [10] 
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I-8-2-2- Simultaneous-multithreading (SMT): 

Is a processor design that consumes both thread-level and instruction-level parallelism. In 

SMT processors thread-level parallelism can come from either multithread, parallel 

programs or individual, independent programs in a multiprogramming workload. ILP 

comes from each single program or thread. Because it successfully (and simultaneously) 

exploits both types of parallelism, SMT processors use resources more efficiently, and 

both instruction throughput and speedups are greater. Figure I-8 shows how three 

different architectures partition issue slots (functional units). 

The rows of squares represent issue slots. The processor either finds an instruction to 

execute (filled box) or it allows the slots to remain unused (empty box). 

 

 

 

 

 

 

 

 

 

 

 
Figure I-7: Parallelism profile for a parallel thread model [11] 

 

Figure I-8: How three different architectures partition issue slots: a- 

superscalar  b- multithreaded superscalar  c- SMT [11] 
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I-8-2-3- Chip multiprocessor (CMP): 

The idea is to put several microprocessors on a single die (Figure I-9). The performance 

of small-scale CMP scales close to linear with the number of microprocessors and is 

likely to exceed the performance of an equivalent multiprocessor system. CMP is an 

attractive option to use when moving to a new process technology. New process 

technology allows us to shrink and duplicate our best existing microprocessor on the 

some silicon die, thus doubling the performance at the same power. 

 

 

 

 

 

 

 

 

 

I-9- Networks on chips 

According to ITRS prediction, by the end of the decade, system on a chip (SoCs) using 

50nm transistors and operating below 1V, will grow up to 4 billion transistors running at 

10 GHz. The major design problem accompanied with these chips will be the challenge 

how to provide correct function and reliable operation of the interacting components. On-

chip physical interconnections will present a limiting factor for performance, and possibly 

for energy consumption. 

Synchronization of future chips with a single clock source and negligible skew will be 

extremely difficult, or even impossible. The most likely synchronization paradigm for 

future chips – globally asynchronous and locally synchronous – involves using many 

different clocks. 

In the absence of a single timing reference, SoC chips become distributed systems on a 

single silicon substrate. In these solutions, components will initiate data transfer 

 

Figure I-9: Chip multiprocessors [11] 
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autonomously, according to their needs, i.e. the global communication pattern will be 

fully distributed. 

On-chip networks relate closely to interconnection networks for high performance parallel 

computers with multiple processors, where processor is an individual chip. Like 

multiprocessor interconnection networks, nodes are physically closer to each other and 

have high link reliability. From the design stand point, network reconfigurability will be a 

key in providing plug-and-play component use because the components will interact with 

one another through reconfigurable protocols. 

 

I-10- Conclusion: 

Human appetite for computation has grown even faster than the processing power that 

Moore's law predicted. We need even more powerful processors just to keep up with 

modern applications like interactive multimedia, mobile computing, wireless 

communications, etc. To make matters more difficult, we need these powerful processors 

to use less energy than we have been accustomed to, i.e. to design power aware 

components/systems. To achieve this functionality we must rethink the way we design 

our contemporary computers. Namely, rather than worrying solely only about 

performance, we need now to judge computers by their performance, power, cost product. 

This new way of looking at processors will lead us to new computer architectures and 

new ways of thinking about computer system design. Thus, if making transistors smaller 

and smaller is continued with the same rate as in the past years, then by the year of 2020, 

the width of wire in a computer chip will be no more than a size of a single atom. These 

are size for which rules of classical physics no longer apply. Computer designed on 

today's chip technology will not continue to get cheaper and better. Because of its 

predicted great power, quantum computer is an attractive next step in computer 

technology. Theoretically, it can run without energy consumption and billion times faster 

than today's computers. Because quantum computers are based on the principles of 

quantum theory, let us first review what quantum mechanics is and what quantum 

information theory is. 
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II-1- Introduction: 

Quantum physics covers a set of physical laws that apply at microscopic scale. 

While fundamentally different from the majority of laws that appear to apply at 

our own scale, that laws of quantum physics nevertheless underpin the general 

basis of physics at all scales. That said, on the macroscopic scale, quantum 

physics in action appears to behave particularly strangely, except for a certain 

number of phenomena that were already curious, such as "superconductivity" 

or "superfluidity", which in fact can only explained by the laws of quantum 

physics. Quantum physics gets its name from the fundamental characteristics of 

quantum objects, i.e., characteristics such as the angular momentum (spin) of 

discrete or discontinuous particles called quanta, which can only take values 

multiplied by an elementary quantum. 

 

II-2- Basic concepts in quantum mechanics 

II-2-1- Wave-particle duality 

The Bohr model of the atom involved two puzzling features - the electron was 

treated as a wave, and light was treated as a particle (a photon). The connection 

to these new pictures of electrons and light from our more familiar view of an 

electron as a particle and light as a wave is provided by the relation 

                                                   
mv

h      …                                            (II-1) 

which links the mass (m) and speed (v) of an electron to the wavelength ( ) of 

the associated wave, and by the relation 

                                                        hvE         …                                                 (II-2) 

which links the frequency ( ) of a light wave to the energy (E) of the 

associated photon.  

These relations are not derivable from other relations; they are hypothesized, 

and are ``true'' only so long as they satisfy experimental verification. Even so, 

they are unlike most mathematical statements, however, in the following sense. 

A statement like Newton's 2
nd

 law of motion,  

                                               vmF *    …                                                 (II-3) 
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refers on both sides of the equal sign to the same object: one says the force on 

some object is equal to the mass (m) of the object times the acceleration (v) of 

the object. Implicit in this is the fact that both sides of the equation are referring 

to the same object, and so we have in mind one common picture of the object. 

However, the preceding quantum relations are referring to different pictures of 

an object: on one side of the equation we view the object as a particle, and use 

words to describe the particle's mass, speed, and energy, and on the other side 

of the equation we view the object as a wave, and use words like wavelength 

and frequency to describe that wave.  

Questions then arise. What is an electron? Is it a particle or a wave? And what 

is light? A wave or a photon? The answer to these is found in the statement of 

wave-particle duality:  

All objects exhibit at times a wave like nature, and at other time a particle like 

nature 

Thus, objects (light, electrons, bowling balls, ...) can at times appear to us as 

waves, and at other times as particles. In this sense they are neither particles 

nor waves, in an absolute sense, but only exhibit wave or particle properties, 

depending on the experiment being performed.   

 

II-2-2- Heisenberg's Uncertainty principle: 

In quantum physics, the outcome of even an ideal measurement of a system is 

not deterministic, but instead is characterized by a probability distribution, and 

the larger the associated standard deviation is, the more "uncertain" we might 

say that that characteristic is for the system. The Heisenberg uncertainty 

principle, or Indeterminacy Principle, articulated in 1927 by the German 

physicist Werner Heisenberg, gives a lower bound on the product of the 

standard deviations of position and momentum for a system, implying that it is 

impossible to have a particle that has an arbitrarily well-defined position and 

momentum simultaneously. More precisely, the products of the standard 

deviations in each of the three spatial dimensions are bounded by 

 

http://en.wikipedia.org/wiki/Quantum_physics
http://en.wikipedia.org/wiki/Measurement_in_quantum_mechanics
http://en.wikipedia.org/wiki/Deterministic
http://en.wikipedia.org/wiki/Probability_distribution
http://en.wikipedia.org/wiki/Standard_deviation
http://en.wikipedia.org/wiki/Werner_Heisenberg
http://en.wikipedia.org/wiki/Momentum
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                                                   …               (II-4) 

 

where   is the reduced Planck constant; Δx, Δy, and Δz are the standard 

deviations of the three coordinates of position; and Δpx, Δpy, and Δpz are the 

standard deviations of the three components of momentum. The principle 

generalizes to many other pairs of quantities besides position and momentum 

(for example, angular momentum about two different axes), and can be derived 

directly from the axioms of quantum mechanics. 

Note that the uncertainties in question are characteristic of the mathematical 

quantities themselves. In any real-world measurement, there will be additional 

uncertainties created by the non-ideal and imperfect measurement process. The 

uncertainty principle holds true regardless of whether the measurements are 

ideal (sometimes called von Neumann measurements) or non-ideal (Landau 

measurements). Note also that the product of the uncertainties, of order 10
−35

 

Joule-seconds, is so small that the uncertainty principle has negligible effect on 

objects of macroscopic scale, despite its importance for atoms and subatomic 

particles. 

As we said, this principle is a consequence of the wave-particle duality. The 

amplitude of the wave associated with a particle corresponds to its position, 

and the wavelength (more precisely, its Fourier transform) is inversely 

proportional to momentum. In order to localize the wave so as to have a sharp 

peak (i.e., a small position uncertainty), it is necessary to incorporate waves 

with very short wavelengths, corresponding to high momenta in all directions, 

and therefore a large momentum uncertainty. A helpful analogy can be drawn 

between the wave associated with a quantum-mechanical particle and a more 

familiar wave, the time-varying signal associated with, say, a sound wave. It is 

meaningless to ask about the frequency spectrum at a single moment in time, 

because the measure of frequency is the measure of a repetition recurring over 

a period of time. Indeed, in order for a signal to have a relatively well-defined 

frequency, it must persist for a long period of time, and conversely, a signal 

http://en.wikipedia.org/wiki/Reduced_Planck_constant
http://en.wikipedia.org/wiki/Coordinate
http://en.wikipedia.org/wiki/Vector_(spatial)#Vector_components
http://en.wikipedia.org/wiki/Axioms
http://en.wikipedia.org/wiki/Von_Neumann
http://en.wikipedia.org/wiki/Lev_Landau
http://en.wikipedia.org/wiki/Joule
http://en.wikipedia.org/wiki/Second
http://en.wikipedia.org/wiki/Macroscopic
http://en.wikipedia.org/wiki/Fourier_transform
http://en.wikipedia.org/wiki/Momentum_operator#Momentum_in_quantum_mechanics
http://en.wikipedia.org/wiki/Signal_(information_theory)
http://en.wikipedia.org/wiki/Sound_wave
http://en.wikipedia.org/wiki/Frequency
http://en.wikipedia.org/wiki/Time
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that occurs at a relatively well-defined moment in time (i.e., of short duration) 

will necessarily encompass a broad frequency band. This is, indeed, a close 

mathematical analogue of the Heisenberg principle. 

 

II-2-3- Quantum superposition: 

The superposition principle plays the most central role in all considerations of 

quantum information. An important experiment in quantum mechanics is the 

double slit experiment which determines the quantum superposition principle. 

The essential ingredients of the experiment are a source, a double-slit 

assembly, and an observation screen on which we observe interference fringes. 

These interference fringes may easily be understood on the basis of assuming a 

wave property of the particles emerging from the source. It might be mentioned 

here that the double-slit experiment has been performed with many different 

kinds of particles ranging from photons, via electrons, to neutrons and atoms. 

Quantum mechanically, tha state is the coherent superposition 

                                                ,
2

1
ba          ...                       (II-5) 

Where 
a and

b  (see II-3 to know the notion of brackets ) describe the 

quantum state with only slit a or slit b open. 

 

II-2-4- Measurement theory 

Suppose we have a system with N distinguishable states 1,...,1,0 N , and 

some apparatus that will reliably distinguish these N states. Without loss of 

generality, let us say the apparatus will output the (classical) label „i‟ together 

with the observed state i  when i  is provided as input. In other words, the 

measurement apparatus provides a classical description of the measurement 

outcome (which we simply denote as i where we indexed the possible 

measurement outcomes using the indices i; the values i do not need to be 

integers), along with some quantum state. Traditionally, the classical 

description or label is often described as a needle pointing to some value on a 

http://en.wikipedia.org/wiki/Frequency_band
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dial. But if we assume only finite resolution we can just as well assume a 

digital display with sufficiently many digits.  

Quantum mechanics tells us that if the state i i i is provided as input to this 

apparatus, it will output label i with probability |αi|
2
 and leave the system in 

state i .  

Thus, for a given orthonormal basis B = i  of a state space HA for a system 

A, it is possible to perform a Von Neumann measurement on system HA with 

respect to the basis B that, given a state  

                                                  
i

ii           …                           (II-6) 

outputs a label i with probability |αi|
2
 and leaves the system in state 

i . 

Furthermore, given a state 
i

ii   from a bipartite state space HA  HB 

(the 
i  are orthonormal; the 

i  have unit norm but are not necessarily 

orthogonal), then performing a Von Neumann measurement on system A will 

yield outcome i with probability |αi|
2
 and leave the bipartite system in state 

i i . 

For the state 
i

ii  , note that  iii  , and thus 

                                    iiiii  *2
              …                   (II-7) 

We can see that two states   and e
iθ
  (differing only by a global phase) are 

equivalent. Consider the state  i i

i

i

i ee   immediately before a 

measurement. The result i will occur with probability 

                                    p (i) = α
*

i e−
iθ

αie
iθ

 = α
*

i αi = |αi|
2
 …                       (II-8)  

and thus the resulting probability is the same as it would be for the state  . 

The statistics of any measurements we could perform on the state e
iθ
 are 

exactly the same as they would be for the state  . This explains that global 

phases have no physical significance. 
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Combining the Measurement Postulate above with the other postulates, we can 

derive more general notions of measurement. In particular, if one wishes to 

measure a pure state  one can add an ancillary register of arbitrary size 

initialized to some fixed state, say 0,...0,0 . One can then perform a unitary 

operation on the joint system, followed by a Von Neumann measurement on 

some subsystem of the joint system to obtain a label i. Depending on what is 

done with the rest of the system (i.e. the part of the system that was not 

measured), one can derive a variety of generalized notions of quantum 

measurement. 

A Von Neumann measurement is a special kind of projective measurement. 

An orthogonal projection is an operator P with the property that P
†
 = P and P

2
 

= P. For any decomposition of the identity operator  i iPI into orthogonal 

projectors Pi, there exists a projective measurement that outputs outcome i with 

probability p(i) =  iP and leaves the system in the renormalized state 

 ip

Pi 
. In other words, this measurement projects the input state   into one of 

the orthogonal subspaces corresponding to the projection operators Pi, with 

probability equal to the square of the size of the amplitude of the component of 

  in that subspace. 

Note that the Von Neumann measurement as described in the Measurement 

Postulate (which can be described as a „complete‟ or „maximal‟ measurement) 

is the special case of a projective measurement where all the projectors Pi have 

rank one (in other words, are of the form ii  for a normalized state i ). 

Projective measurements are often described in terms of an observable. An 

observable is a Hermitean operator M acting on the state space of the system. 

Since M is Hermitean, it has a spectral decomposition 

                                                      
i

ii PmM    …                                  (II-9) 

where Pi is the orthogonal projector on the eigenspace of M with real 

eigenvalue mi. Measuring the observable corresponds to performing a 
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projective measurement with respect to the decomposition  i iPI where the 

measurement outcome i corresponds to the eigenvalue mi. 

 

II-2-5- Entanglement 

Consider a source which emits a pair of particles such that one particle emerges 

to the left and the other one to the right (see source S in Figure II-1). The 

source is such that the particles are emitted with opposite momenta. If the 

particle emerging to the left, which we call particle 1, is found in the upper 

beam, then particle 2 traveling to the right is always found in the lower beam. 

Conversely, if particle 1 is found in the lower beam, then particle 2 is always 

found in the upper beam. In our qubit  language we would say that the two 

particles carry different bit values. Either particle 1 carries “0” and then particle 

2 definitely carries “1”, or vice versa. Quantum mechanically this is a two-

particle superposition state of the form 

                                         
2121

0110
2

1 ie        …                         (II-10) 

The phase  is just determined by the internal properties of the source and we 

assume for simplicity 0 . Equation (II-10) described what is called an 

entangled state. The interesting property is that neither of the two qubits carries 

a definite value, but what is known from the quantum state is that as soon as 

one of the two qubits is subject to a measurement, the result of this 

measurement being completely random, the other one will immediately be 

found to carry the opposite value. In a nutshell this is the conundrum of 

quantum non-locality, since the two qubits could be separated by arbitrary 

distances at the time of the measurement. 

A most interesting situation arises when both qubits are subject to a phase shift 

and to Hadamard transformation (see II-4-3) as shown in Figure II-1 [24]. 

Then, for detection events after both Hadamard transformations, that is, for the 

case of the two particle interferometer verification for detection behind the 

beamspliters, interesting non local correlations result which violate Bell‟s 

inequalities [24].  
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The essence of such a violation is that there is no possibility to explain the 

correlations between the two sides on the basis of local properties of the qubits 

alone. The quantum correlations between the two sides cannot be understood 

by assuming that the specific detector on one given side which registers the 

particle is not influenced by the parameter setting, that is, by the choice of the 

phase for the other particle. 

A very interesting, and for quantum computation quite relevant generalization 

follows if entanglement is studied for more than two qubits. Consider the 

simple case of entanglement between three qubits, as shown in Figure II-2. We 

assume that a source emits three particles, one into each of the apparatuses 

shown, in the specific superposition, a so-called Greenberger-Horne-Zeilinger 

(GHZ) [24], 

                                   
321321

111000
2

1
        …                         (II-11)                                                                                

This quantum state has some very peculiar properties. Again, as in two-particle 

entanglement, none of the three qubits carries any information on its own; none 

of them has a defined bit value. But, as soon as one of the three is measured, 

the other two will assume a well-defined value as long as the measurement is 

performed in the chosen 0-1 basis. This conclusion holds independent of the 

special separation between the three measurements. 

 

Figure II-1: A source of emits two qubits in an entagled state. Top: A two particle 

interferometer verification. Bottom: The principle in terms of one photon gates. [24] 
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Most interestingly, if one looks at the relations predicted by the GHZ state (II-

11) between the three measurements after passing the phase shifters and the 

Hadamard transforms, a number of perfect correlations still result for certain 

joint settings of the three parameters, the interesting property now being that it 

is not possible to understand even the perfect correlations with a local model. 

This shows that quantum mechanics is at variance with a classical local world 

view not only for the sector of statistical predictions of the theory but also for 

predictions which can be made with certainty. 

 

II-2-6- Entanglement and quantum indistinguishability 

In order to understand both the nature of entanglement and ways of producing 

it, one has to realize that in states of the general form the equations (II-10) and 

(II-11), we have a superposition between product states. We recall from the 

discussion of the double-slit diffraction phenomenon that superposition means 

that there is no way to tell which of the two possibilities forming the 

superposition actually pertains. This rule must also be applied to the 

understanding of quantum entanglement. For example, in the state 

         …            (II-12)                                                     

 

there is no way of telling whether qubit 1 carries the value”0” or “1”, and 

likewise whether qubit 2 carries the value ”0” or “1”. Yet if one qubit is 

measured the other one immediately assumes a well-defined quantum state. 

 

Figure II-2 : Three particles entanglement in a GHZ state. [24] 
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These observations lead us directly to the conditions of how to produce and 

observe entangled quantum states. 

To produce entangled quantum states, one has various possibilities. Firstly, one 

can create a source which, through its physical construction, is such that the 

quantum states emerging already have the indistinguishability feature discussed 

before. This is realized, for example, by the decay of a spin-0 particle into two 

spin-1/2 particles under conservation of the internal angular momentum . In 

this case, the two spins of the emerging particles have to be opposite, and, if no 

further mechanisms exist which permit us to distinguish the possibilities right 

at the source, the emerging quantum state is 

                                 
2121

12
2

1
      …                          (II-13)                                                                               

Where, e.g. 1 means particle 1 with spin up. The state (II-13) has the 

remarkable property that it is rotationally invariant, i.e., the two spins are anti-

parallel along whichever direction we choose to measure. 

A second possibility is tat a source might actually produce quantum states of 

the form of the individual components in the superposition of (II-13), but the 

states might still be distinguishable in some way. This happens, for example, in 

type-II parametric down, where along a certain chosen direction the two 

emerging photon states are. 

                                                   
21  VH  and  

21  HV      …                  (II-14)                                                                                       

That means that either photon 1 is horizontally polarized and photon 2 is 

vertically polarized, or photon 1 is vertically polarized and photon 2 is 

horizontally polarized. Yet because of the different speeds of light for the H 

and V polarized photons inside the down-conversion crystal, the time 

correlation between the two photons is different in the two cases. Therefore, the 

two terms in (II-14) can be distinguished by a time measurement and no 

entangled state results because of this potential to distinguish the two cases. 

However, in this case too one can still produce entanglement by shifting the 

two photon-wave packets after their production relative to each other such that 

they become indistinguishable on the basis of their positions in time. 
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What this means is the application of a quantum eraser technique where a 

marker, in this case the relative time ordering, is erased such that we obtain 

quantum indistinguishability resulting in the state.   

                                 
212112

2

1
HVeVH i    …        (II-15)                                                                 

which is entangled. 

A third means of producing entangled states is to project a non-entangled state 

onto an entangled one. We remark, for example, that an entangled state is never 

orthogonal to any of its components. Specifically, consider a source producing 

the non-entangled state 

                                                       21 10      …                                       (II-16)                       

Suppose this state is now sent through a filter described by the projection 

operator 

                                          ,1212 P             …                                 (II-17)                                                                                                                 

Where 
12 is the state of (II-12). Then the following entangled state results: 

    ;0110
2

1
1001100110

2

1
21212121212121

 …(II-18) 

It is no longer normalized to unity because the projection procedure implies a 

loss of qubits. 

While each of three methods discussed above can in principle be used to 

produce outgoing entangled states, a further possibility exists to produce 

entanglement upon observation of a state. In general, this means that we have 

an unentangled or partially entangled state of some form and the measurement 

procedure itself is such that it projects onto an entangled state, in much the 

same way as discussed just above. This procedure was used, for example, in the 

first experimental demonstration of GHZ entanglement of three photons . 

II-2-7- Decoherence: 

Decoherence is a phenomenon that plays a great role in many of the events of 

quantum mechanics. Understanding decoherence is essential to understanding 

how classical physics emerges from quantum mechanics. 



Chapter II                                                                     Notions of quantum mechanics 

U.H.B.C 32 

The basic idea is this: a quantum system, A, in isolation, behaves in a 

characteristically quantum-mechanical fashion, exhibiting interference effects 

that reflect the phase difference between the various components of its state 

vector. For example, if A consists of an electron in a state that is a 

superposition of equal parts spin up and spin down, there will be measurements 

that can be performed on the electron that will be sensitive to the phase 

relationship between these two components. This is quite different from the 

classical notion of probability: there isn't merely a 50% chance for the 

electron's spin to be up or down; rather, both possibilities exist simultaneously, 

and the phase describes a relationship between them that would be meaningless 

if either was absent. 

If system A then interacts with another system, B, in such a manner that 

different components of A's state vector influence B differently, the two 

systems become entangled, and observations on A alone will no longer exhibit 

quantum effects. System A appears to have “collapsed” down to just one 

component of its original state vector. In the example of the electron, it now 

acts as if there were merely a 50/50 chance for its spin to be either purely up or 

purely down. 

However, no such “collapse” has really taken place. Measurements on the 

combined system, A+B, reveal that it is in a pure quantum state, and none of 

the original components of A's state vector have been lost. Classical physics 

emerges, essentially, from the inability to observe everything we'd need to in 

order to detect quantum phenomena in the world at large.  

 

II-3- Linear Algebra and the Dirac notation 

II-3-1- The Dirac Notation and Hilbert Spaces 

In the Dirac notation, the state “a”of a system is denoted by the „ket‟ a . We 

denote the dual vector for a  with a „bra‟, written as a . Then inner products 

will be written as „bra-kets‟ (e.g. ba ). 
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The kets belong to a vector spaces called Hilbert spaces. We will use H to 

denote such a space. 

Since H is finite-dimensional, we can choose a basis and alternatively represent 

vectors (kets) in this basis as finite column vectors, and represent operators 

with finite matrices. The Hilbert spaces of interest for quantum computing will 

typically have dimension 2
n
 for some positive integer n. This is because, as 

with classical information, we will construct larger state spaces by 

concatenating a string of smaller systems, usually of size two. 

We will often choose to fix a convenient basis and refer to it as the 

computational basis. In this basis, we will label the 2
n
 basis vectors in the Dirac 

notation using the binary strings of length n: 

                             .11...11,10...11,...,01...00,00...00


n

    …                    (II-19) 

The standard way to associate column vectors corresponding to these basis 

vectors is as follows: 
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00..00  …(II-20) 

An arbitrary vector in H can be written either as a weighted sum of the basis 

vectors in the Dirac notation, or as a single column matrix. 

 

II-3-2- Dual Vectors 

For vectors over the complex numbers, an inner product is a function which 

takes two vectors from the same space and evaluates to a single complex 

number. We write the inner product of vector v with w as wv . An inner 

product is such a function having the following properties. 

1. Linearity in the second argument 
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i

i

i

i

ii wvwv ,,     …                            (II.21) 

2. Conjugate-commutativity 

                                                   
*

,, vwwv             …                           (II.22) 

3. Non-negativity 

                                                       0, vv                 …                          (II.23) 

with equality if and only if v = 0. 

A familiar example of an inner product is the dot product for column vectors. 

The dot product of v with w is written v · w and is defined as follows. 
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Definition II-1: 

Let H be a Hilbert space. The Hilbert space H∗ is defined as the set of linear 

maps H→C. 

We denote elements of H∗ by  , where the action of   is: 

                                       C :          …                            (II-25) 

Where   is the inner-product of the vector     H with the vector    H. 

The set of maps H∗ is a complex vector space itself, and is called the dual 

vector space associated with H. The vector   is called the dual of  . In terms 

of the matrix representation,  is obtained from   by taking the 

corresponding row matrix, and then taking the complex conjugate of every 

element (i.e. the „Hermitean conjugate‟ of the column matrix for  ). Then the 

inner product of   with   is  , which in the matrix representation is 

computed as the single element of the matrix product of the row matrix 

representing   with the column matrix representing  . This is equivalent to 
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taking the dot product of the column vector associated with   with the 

column vector associated with  . 

Two vectors are said to be orthogonal if their inner product is zero. The norm 

of a vector  , denoted   is the square root of the inner product of  with 

itself. That is, 

                                                                      …                   (II-26) 

The quantity  is called the Euclidean norm of  . A vector is called a unit 

vector if it has norm 1.  A set of unit vectors that are mutually orthogonal is 

called an orthonormal set. 

Definition II-2: 

Consider a Hilbert space H of dimension 2
n
. A set of 2

n
 vectors B =  mb   H 

is called an orthonormal basis for H if 

                                              
mnmn bb ,           Bbb nm  ,    …            (II-27) 

and every    H can be written as 

                                        



Bb

nn

n

b       for some Cn     …          (II-28) 

The values of n satisfy  nn b , and are called the ‘coefficients of   

with respect to basis nb . 

Note that if we express  i ii   with respect to any orthonormal 

basis i , then 
2

 i i . 

Theorem II-1 [23] 

The set  nb is an orthonormal basis for H
*
called the dual basis. 

 

II-3-3- Operators 

Definition II-3 

A linear operator on a vector space H is a linear transformation T : H → H of 

the vector space to itself (i.e. it is a linear transformation which maps vectors 

in H to vectors in H). 
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Just as the inner product of two vectors  and  is obtained by multiplying 

  on the left by the dual vector  , an outer product is obtained by 

multiplying   on the right by  . The meaning of such an outer 

product   is that it is an operator which, when applied to  , acts as 

follows. 

                                   .      …                    (II-29) 

The outer product of a vector  with itself is written  and defines a 

linear operator that maps 

                                            …                  (II-30) 

That is, the operator  projects a vector   in H to the 1-dimensional 

subspace of H spanned by  . Such an operator is called an orthogonal 

projector. 

Theorem II-2 [23] 

 Let B =  nb be an orthonormal basis for a vector space H. Then every linear 

operator T on H can be written as 

                                              mn

Bbb

mn bbTT
mn





,

,        …                           (II-31) 

Where 
mnmn bTbT ,

. 

We know that the set of all linear operators on a vector space H forms a new 

complex vector space L(H) („vectors‟ in L(H) are the linear operators on H). 

Notice that Theorem II-2 essentially constructs a basis for L(H) out of the 

given basis for H. The basis vectors for L(H) are all the possible outer products 

of pairs of basis vectors from B, that is mn bb . 

The action of T is then 

                       .:
,

,

,

, n

Bbb

mmnmn

Bbb

mn bbTbbTT
mnmn




       …       (II-32) 

In terms of the matrix representation of T, Tn,m is the matrix entry in the n
th

 row 

and m
th

 column. 

For any orthonormal basis B =  nb , the identity operator can be written as 
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                                                    



Bb

nn

n

bb1        …                             (II-33) 

Equation (II-33) is called the resolution of the identity in the basis B. 

Notice that, for an operator T on H, and  H, the map 

                                                        T     …                       (II-34) 

is a linear map from H to C, and thus belongs to H
*
. Each map in H

*
 

corresponds to some vector * . The adjoint of the operator T, denoted T
+
, is 

defined as the linear map that sends *  , where    *T for 

all  .  

Definition II-4 

 Suppose T is an operator on H. Then the adjoint of T, denoted T
+
, is defined as 

that linear operator on H* that satisfies 

                                   TT  *
      ,    H  ,      …     (II-35) 

In the standard matrix representation, the matrix for T
+
 is the complex 

conjugate transpose (also called the „Hermitean conjugate‟, or „adjoint‟) of the 

matrix for T. 

Definition II-5  

An operator U is called unitary if U
+ 

= U
−1

, where U
−1

 is the inverse of U. 

Note that U
+
 = U

−1
 implies U

+
U = I, where I is the identity operator. The 

unitary operators preserve inner products between vectors, and in particular, 

preserve the norm of vectors. 

We also define a class of operators that describes the Hamiltonian of a system 

as well as the observables, which correspond to an important type of 

measurement in quantum mechanics. 

Definition II-6  

An operator T in a Hilbert space H is called Hermitian (or self-adjoint) if 

                                                   T
+
 = T          …                                        (II-36) 

(i.e. it is equal to its own Hermitian conjugate). 
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Definition II-7  

A projector on a vector space H is a linear operator P that satisfies P
2
 = P. An 

orthogonal projector is a projector that also satisfies P
+
 = P. 

Definition II-8  

A vector  is called an eigenvector of an operator T if 

                                               T  = c                 …                              (II-37) 

for some constant c. The constant c is called the eigenvalue of T corresponding 

to the eigenvector  . 

Theorem II-3 [23] 

If T = T
†
 and if T  = λ   then λ   R. In other words, the eigenvalues of a 

Hermitian operator are real. 

Definition II-9  

The trace of an operator A acting on a Hilbert space H is 

                                                           
nb

nn bAbATr             …           (II-38) 

where  nb is any orthonormal basis for H. 

 

II-3-4- The spectral theorem 

The spectral theorem is a central result in linear algebra, because it is often 

very convenient to be able to specify a basis in which a given operator is 

diagonal (i.e. to diagonalize the operator). The spectral theorem applies to a 

wide class of operators which we now define. 

Definition II-10  

A normal operator A is a linear operator that satifies 

                                             AA
† 
= A

†
A           …                                       (II-39) 

Notice that both unitary and Hermitean operators are normal. So, most of the 

operators that are important for quantum mechanics and quantum computing 

are normal. 
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Theorem II-4 [23] 

For every normal operator T acting on a finite-dimensional Hilbert space H, 

there is an orthonormal basis of H consisting of eigenvectors 
iT of T. 

Note that T is diagonal in its own eigenbasis:  i III TTTT , where Ti are the 

eigenvalues corresponding to the eigenvectors
iT . We sometimes refer to T 

written in its own eigenbasis as the spectral decomposition of T. The set of 

eigenvalues of T is called the spectrum of T. 

The Spectral Theorem tells us that we can always diagonalize normal operators 

(in finite dimensions). In the linear algebra the diagonalization can be 

accomplished by a change of basis (to the basis consisting of eigenvectors). 

The change of basis is accomplished by conjugating the operator T with a 

unitary operator P. With respect to the matrix representation for the operator T, 

we can restate the Spectral Theorem in a form which may be more familiar. 

Theorem II-5 [23] 

For every finite-dimensional normal matrix T, there is a unitary matrix P such 

that T = PΛP
+
, where Λ is a diagonal matrix. 

The diagonal entries of Λ are the eigenvalues of T, and the columns of P 

encode the eigenvectors of T. 

 

II-3-5- Functions of operators 

One of the reasons why the Spectral Theorem is important is that it allows us to 

simplify the expressions for functions of operators. By the Spectral Theorem, 

we can write every normal operator T in the diagonal form 

                                                     
i

iii TTTT                  …                (II-40) 

First, note that since each ii TT is a projector, 

                                                     ii

m

ii TTTT                 …               (II-41) 

for any integer m. Also noting that the eigenvectors are orthonormal, we have 

                                                         jiji TT ,                    …               (II-42) 
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So this means that computing a power of T (in diagonal form) is equivalent to 

computing the powers of the diagonal entries of T: 

                                     








i

ii

m

i

m

i

iii TTTTTT           …              (II-43) 

The Taylor series for a function f : C → C, has the form 

                                               





0

)(
m

m

m xaxf                          …              (II-44) 

The range of values of x for which the Taylor series converges is called the 

interval of convergence. For any point x in the interval of convergence, the 

Taylor series of a function f converges to the value of f(x). 

Using the Taylor series for a function f, we can define the action of f on 

operators over C (provided the relevant Taylor series converges). For example, 

we would define the exponential function so that, for an operator T, we have 

                                              
m

mT T
m

e
!

1
                              …             (II-45) 

In general, the Taylor series for any function f acting on an operator T will have 

the form 

                                            
m

m

mTaTf )(                               …            (II-46) 

If T is written in diagonal form, then the expression simplifies: 

   









m i

iii

i

ii

m

im

m

m i

iiim

m

m

m TTTfTTTaTTTaTaTf )()( … 

(II-47) 

So when T is written in diagonal form, f(T) is computed by applying f 

separately to the diagonal entries of T. In general, the procedure for computing 

a function f of an operator T is to first diagonalize T (the Spectral Theorem tells 

us we can do this for most of the operators that will be important to us), and 

then compute f individually on the diagonal entries. 

 

II-3-6- Tensor products 

The tensor product is a way of combining spaces, vectors, or operators 

together. Suppose H1 and H2 are Hilbert spaces of dimension n and m 
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respectively. Then the tensor product space H1H2 is a new, larger Hilbert 

space of dimension n×m. Suppose    nibi ,...,1 is an orthonormal basis for 

H1 and    mjc j ,...,1 is an orthonormal basis for H2. Then  

                                              mjnicb ji ,...,1,,...1               …       (II-48) 

is an orthonormal basis for the space H1H2. The tensor product of two 

vectors 
1 and 

2 from spaces H1 and H2, respectively, is a vector in 

H1H2, and is written 
21   . The tensor product is characterized by the 

following axioms: 

1. For any c   C, 
1   H1, and 

2   H2, 

                                   212121  ccc         …    (II-49) 

2. For any 
11 ,    H1, and 

2   H2, 

                                 2121211         …     (II-50) 

3. For any
1    H1, and

22 ,     H2, 

                                  2121221         …   (II-51) 

Suppose A and B are linear operators on H1 and H2 respectively. Then A   B is 

the linear operator on H1H2 defined by 

                                         2121  BABA               …   (II-52) 

This definition extends linearly over the elements of H1 H2: 

                                  














ij

jiij

ij

jiij cBbAcbBA        …   (II-53) 

We have presented the tensor product using the Dirac notation. In the matrix 

representation, this translates as follows. Suppose A is an m×n matrix and B a 

p×q matrix, then the left Kronecker product of A with B is the mp×nq matrix 

                            























pqmnpmnpqmpm

qmnmnqmm

pqnpnpqp

qnnq

BABABABA

BABABABA

BABABABA

BABABABA

BA

.........

.........

.........

.........

1111

11111111

11111111

111111111111

   …  (II-54) 

This matrix is sometimes written more compactly in „block form‟ as 
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     
     

     



















BABABA

BABABA

BABABA

BA

mnmm

n

n

.......

....

.......

......

21

22221

11211

           …   (II-55) 

Here, [B] represents the p×q submatrix B. Then each block entry Aij [B] above 

is the matrix [B] multiplied by the single entry in row i, column j, of matrix A. 

                                     























pqijpijpij

qijijij

qijijij

BABABA

BABABA

BABABA

BA

.......

....

.......

......

21

22221

11211

          …  (II-56) 

The matrix representation for the tensor product of two vectors, or two 

operators, is the left Kronecker product of the matrix representation of the two 

vectors or operators being „tensored‟ together. For example, the matrix 

representation of    1010 1010   is 

                                                      







































11

01

10

00

1

0

1

0
















                    … (II-57) 

II-3-7- The Schmidt decomposition theorem 

Theorem II-6 

 If   is a vector in a tensor product space HAHB, then there exists an 

orthonormal basis  A

i  for HA, and an orthonormal basis  B

i  (for HB, 

and non-negative real numbers  ip so that 

                                                  B

i

i

A

iip                           …   (II-58) 

The coefficients ip are called Schmidt coefficients. To understand what this 

theorem is saying, suppose A

i  and  B

i  were chosen to be any arbitrary 

orthonormal bases for HA and HB respectively. Then, the basis states for the 

space HAHB are B

j

A

i    (often written B

j

A

i  ). 

The general vector  in HA  HB is then 
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                                                     B

j

ji

A

iji  
,

,                       …   (II-59) 

where the coefficients 
ji

i

ji pe ji

,,
,

   are in general complex numbers. Note 

that we have had to use different indices on the two sets of basis vectors to 

account for all the „cross-terms‟. If HA has dimension m and HB has dimension 

n, this general vector is a superposition of mn basis vectors. The Schmidt 

decomposition tells us that we can always find some pair of bases  A

i and 

 B

j such that all the „cross terms‟ vanish, and the general vector simplifies to 

a sum over one set of indices 

                                                 B

i

i

A

iip                            …   (II-60) 

and the coefficients can be assumed to be real (since any phase factors can be 

absorbed into the definitions of the basis elements). The number of terms in 

this sum will be (at most) the minimum of m and n. 

 

II-3-8- Mixed States  

In the preceding, we have always assumed that the state of a system has a 

definite state vector. Such a state is commonly referred to as a pure state. There 

are important situations, for which the qubit is described by one of a specific 

set of state vectors, with corresponding probabilities (the probabilities must add 

to 1). For example, suppose we know that a qubit is in the pure state 

1
2

1
0

2

1
1   with probability 1/3, and is in the pure state 

1
2

1
0

2

1
2   with probability 2/3. The state described by this 

probability distribution is called a mixture or ensemble of the states 1  and 

2 . We refer to the state of a system in such a situation as being a mixed 

state. 
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III-3-8-1- Mixed states 

We can have mixed states on an ensemble of any number n of qubits. One way 

of representing a general mixed state on n qubits is as the ensemble 

                                                kk ppp ,,...,,,, 2211                 …   (II-61) 

which means that the system is in the pure (n-qubit) state 
i with probability 

pi, for i = 1, 2, . . . , k. Note that a pure state can be seen as a special case of a 

mixed state, when all but one of the pi equal zero. 

To use a representation such as (II-61) in all our calculations would be quite 

cumbersome. There is an alternative, very useful, representation of mixed 

states in terms of operators on the Hilbert space H. These are called density 

operators. The matrix representation of a density operator is called a density 

matrix. 

The density operator for a pure state   is defined as 

                                                                                            …   (II-62) 

If we apply the unitary operator U to state  we get the state U   which has 

density operator U  U
†
. Consider measuring the state with density 

operator   in the computational basis. The probability of getting 0 is 

given by 0000    

Notice that  00  evaluates to a real number. Since any number is the 

trace of a corresponding 1 × 1 matrix (whose only entry is that complex 

number), we can also write the probability of the measurement giving result 0 

as  

                                     000000 TrTr     …   (II-63) 

where the last step follows from the cyclicity of trace (i.e. Tr(ABC) = Tr(BCA) 

= Tr(CAB)). 

Similarly, if we measure a qubit in a state with density operator   , the 

probability of obtaining the outcome 1 is  11Tr . If only dealing with 

pure states, this notation is unnecessarily redundant; however, if we also 
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consider mixed states it is a much more concise notation than used above in 

Equation (II-61). 

The density operator for an ensemble of pure states such as (II-61) is 

                                                         



k

i

iiip
1

                        …   (II-64) 

and captures all the relevant information about the state of the system. 

 

II-3-8-2- Mixed states and the Bloch sphere 

The pure states of a qubit can be represented by points on the surface of the 

Bloch sphere. Mixed states correspond to points in the interior of the Bloch 

sphere, which can be seen as follows. If  i iiip  and if the Bloch 

vector for 
i  is (αx,i, αy,i, αz,i), then the Bloch vector for the mixed state ρ is 

                       









i i i i

iziiyiixiiziyixi pppp ,,,,,, ,,,,      …  (II-65) 

There are of course many different convex combinations of points on the 

surface of the Bloch sphere that correspond to the same mixed state. One can 

compute the Bloch vector for a mixed state directly from its density matrix as 

follows. If we observed that any operator on a single qubit can be written as a 

linear combination of operators from {I,X, Y,Z}. 

The operators X, Y,Z all have trace 0. Since a density matrix must have trace 1, 

this means that any density operator for a single qubit can be written as 

ZYXI zyX  
2

1
 

The vector (αx, αy, αz) gives the coordinates for the point in the Bloch sphere 

corresponding to the state ρ. For example, the totally mixed state (the ensemble 


























2

1
,11,

2

1
,00 corresponds to the point at the centre of the Bloch sphere. 

II-3-9- Time-evolution of a closed system 

A physical system changes in time, and so the state vector  of a system will 

actually be a function of time,  t . Quantum theory postulates that the 

evolution of the state vector of a closed quantum system is linear. In other 
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words, if we know that some fixed transformation, let us call it U, maps
i  to 

U
i then 

                                            
i i

iiii UU                            …   (II-66) 

Thus, the time-evolution of the state of a closed quantum system is described 

by a unitary operator. That is, for any evolution of the closed system there 

exists a unitary operator U such that if the initial state of the system is
1 , then 

after the evolution the state of the system will be 

                                                         
12  U                                …  (II-67) 

In quantum computing, we refer to a unitary operator U acting on a single-qubit 

as a 1-qubit (unitary) gate. We can represent operators on the 2-dimensional 

Hilbert space of a single qubit as 2 × 2 matrices. A linear operator is specified 

completely by its action on a basis. 

In the principle of quantum mechanicsthe continuous timeevolution of a closed 

quantum mechanical system (ignoring special relativity) follows the 

Schr¨odinger equation  

                                                 
 

   ttH
dt

td
i 


                          …  (II-68) 

where h  is a physical constant known as Planck’s constant and H(t) is a 

Hermitean operator known as the Hamiltonian of the system. The Hamiltonian 

is an operator which represents the total energy function for the system. It may 

in general be a function of time, but for convenience, let us consider 

Hamiltonians that are constant. In this case the solution to the Schr¨odinger 

equation for fixed times t1 and t2 is 

                                                   2

)(

2
12 tet
ttHi  


                       …  (II-69) 

For Hermitean operators H, the operator e
−iH(t2−t1) 

is a unitary operator. So for 

the case of (non-relativistic and continuous time) constant Hamiltonians, one 

can observe that the Evolution Postulate follows from the Schr¨odinger 

equation. 
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II-3-10- Composite systems 

So far we have discussed the postulates for the case of a single system only, in 

particular a qubit. If all we ever needed to know was how isolated qubits 

behave when they are never allowed to interact with each other, then this would 

be sufficient. If we want to study potentially useful quantum computations we 

will need to understand how quantum mechanics works for systems composed 

of several qubits interacting with each other. That is, we would like to know 

how to describe the state of a closed system of n qubits, how such a state 

evolves in time, and what happens when we measure it. Treating a larger 

system as a composition of subsystems (of bounded size) allows for an 

exponentially more efficient description of operations acting on a small number 

of subsystems. 

Thus, when two physical systems are treated as one combined system, the state 

space of the combined physical system is the tensor product space H1H2 of 

the state spaces H1,H2 of the component subsystems. If the first system is in the 

state 
1 and the second system in the state 

2 then the state of the combined 

system is 

                                                             
21                                …   (II-70) 

It is important to note that the state of a 2-qubit composite system cannot 

always be written in the product form 
21   . If the 2 qubits are prepared 

independently, and kept isolated, then each qubit forms a closed system, and 

the state can be written in the product form. However, if the qubits are allowed 

to interact, then the closed system includes both qubits together, and it may not 

be possible to write the state in the product form. When this is the case, we say 

that the qubits are entangled. From an algebraic point of view, the state of the 

composite system is a vector in the 4-dimensional tensor-product space of the 2 

constituent qubits. The 4-dimensional state vectors that are formed by taking 

the tensor product of two 2-dimension state vectors form a sparse subset of all 

the 4-dimensional state vectors. In this sense, „most‟ 2-qubit states are 

entangled. 
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II-4- Qubits  

II-4-1- The state of a quantum system 

A photon that is constrained to follow one of two distinguishable paths. We 

identified the two distinguishable paths with the 2-dimensional basis vectors 










0

1
and 









1

0
 and then noted that a general „path state‟ of the photon can be 

described by a complex vector  

                                                               








1

0




                                     …  (II-71) 

with |α0|
2
 + |α1|

2
 = 1. This simple example captures the essence of the first 

postulate, which tells us how physical states are represented in quantum 

mechanics which said that The state of a system is described by a unit vector in 

a Hilbert space H. 

Depending on the degree of freedom (i.e. the type of state) of the system being 

considered, H may be infinite-dimensional. For example, if the state refers to 

the position of a particle that is free to occupy any point in some region of 

space, the associated Hilbert space is usually taken to be a continuous (and thus 

infinite dimensional) space. It is worth noting that in practice, with finite 

resources, we cannot distinguish a continuous state space from one with a 

discrete state space having a sufficiently small minimum spacing between 

adjacent locations. For describing realistic models of quantum computation, we 

will typically only be interested in degrees of freedom for which the state is 

described by a vector in a finite-dimensional (complex) Hilbert space. In 

particular, we will primarily be interested in composite systems composed of 

individual two-level systems. The state of each two-level system is described 

by a vector in a 2-dimensional Hilbert space. We can encode a qubit in such a 

two-level system. We would choose a basis for the corresponding 2-

dimensional space. We would label one of the basis vectors with 0 and the 

other basis vector with 1 . This is analogous to what is done for classical 

computation. For a classical computer, the two-level system may be the voltage 

level on a wire, which could be zero, or some positive value (say +5 mV). We 
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might encode a classical bit in such a system by assigning the binary value „0‟ 

to the state in which the voltage on the wire is 0, and the value „1‟ to the state 

in which the voltage on the wire is + 5 mV. The  1,0  basis for the state of a 

qubit is commonly referred to as the computational basis. 

The state of this system is described by a vector in a 2-dimensional Hilbert 

space. A convenient basis for this space consists of a unit vector for the state in 

which a photon is not present, and an orthogonal unit vector for the state in 

which a photon is present. We can label these states with 0 and 1 , 

respectively. Then the general state of the system is expressed by the vector 

10 10    

where α0 and α1 are complex coefficients, often called the amplitudes of the 

basis states 0 and 1  , respectively. Note that a complex amplitude α can be 

decomposed unique as a product e
iθ

|α| where |α| is the non-negative real number 

corresponding to the magnitude of α, and e
iθ

 = 



 has norm 1. The value θ is 

known as the „phase‟, and we refer to the value e
iθ

 as a „phase factor‟. 

The condition that the state is described by a unit vector means that |α0|
2
 + |α1|

2
 

= 1. This condition is sometimes called the normalization constraint, and it is 

necessary for consistency with the way quantum measurements behave. The 

general state of the system is a superposition of a photon being present, and a 

photon not being present. 

Another example of a two-level quantum mechanical system is the spin state of 

certain types of particles. According to quantum physics, particles have a 

degree of freedom called spin, which does not exist in a classical description. 

Many particles fall into the category of so called spin1/2particles. For these, the 

spin state is indeed described by a vector in a 2-dimensional Hilbert space H. A 

convenient basis for this space consists of a unit vector for the „spin-up‟ state of 

the particle, and an orthogonal unit vector for the „spin-down‟ state of the 

particle. We can label these basis vectors by 0 and 1 , respectively. The 
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general spin state of a spin1/2 particle is a superposition of spin-up and spin-

down. 

An important point about state vectors is the following. The state described by 

the vector e
iθ  is equivalent to the state described by the vector  , where e

iθ
 

is any complex number of unit norm. For example, the state 10   is 

equivalent to the state described by the vector 10  ii ee  . 

On the other hand, relative phase factors between two orthogonal states in 

superposition are physically significant, and the state described by the vector 

10   is physically different from the state described by the vector 10 ie  

So the State Space Postulate, together with the observation of the previous 

paragraph, tells us that we can describe the most general state  of a single 

qubit by a vector of the form 

                                        1
2

sin0
2

cos 



















 ie                      …  (II-72) 

Consider the analogous situation for a deterministic classical bit. The state of a 

classical bit can be described by a single binary value ψ, which can be equal to 

either 0 or 1(Figure II-3) 

 

Figure II-3: The state of a deterministic classical bit can be represented as one 

of two points, labelled „0‟ and „1‟. 

 

In this figure, the state can be indicated by a point in one of two positions, 

indicated by the two points labelled 0 and 1.  

Next consider the slightly more complicated situation of a classical bit whose 

value is not known exactly, but is known to be either 0 or 1 with corresponding 

probabilities p0 and p1. We might call this a probabilistic classical bit. The 
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state of such a probabilistic bit is described by the probabilities p0 and p1, 

which satisfy p0 + p1 = 1. We can represent these two probabilities by the 2-

dimensional unit vector 








1

0

p

p
 whose entries are restricted to be real and non-

negative (Figure II-4). In this figure, the state could be drawn as a point on the 

line between the positions 0 and 1. We suppose this line has unit length, and 

the position of the point on the line is determined by the probabilities p0 and p1. 

 

Figure II-4: A probabilistic classical bit. Here the probabilities p0 and p1 of the 

bit being 0 and 1, respectively, are represented by the position of a point on the 

line segment between the points representing 0 and 1. 

 

Note that with only one copy of such a probabilistic bit, we cannot determine 

p0 and p1 exactly. If we are given a means to obtain several independent copies 

of the probabilistic bit then we could accumulate statistics about the values p0 

and p1. Otherwise, we cannot in general „clone‟ this bit and get two or more 

independent copies that would allow us to obtain arbitrarily good estimates of 

p0 and p1. 

Now return to the state of a quantum bit, which is described by a complex unit 

vector  in a 2-dimensional Hilbert space. Up to a global phase factor, such a 

vector can always be written in the form 

                                        1
2

sin0
2

cos 







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


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





 ie                     …   (II-73) 

Such a state vector is often depicted as a point on the surface of a 3-

dimensional sphere, known as the Bloch sphere (Figure II-5). Two real 
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parameters θ and   are sufficient to describe a state vector, since state vectors 

are constrained to have norm 1 and are equivalent up to global phase. Points on 

the surface of the Bloch sphere can also be expressed in Cartesian coordinates 

as  

                                      )cos,sinsin,cos(sin,, zyx                …  (II-74) 

 

Figure II-5: State of a qubit on the Bloch sphere. 

 

II-4-2- General Quantum Operations 

A superoperator or a „general quantum operation‟ can take as input a system 

described by a density operator ρin corresponding to a Hilbert space of 

dimension N, add an ancilla of arbitrary size (in fact, it can be shown, using 

Caratheodory‟s Theorem, that the dimension of the ancilla never needs to be 

larger than N
2
 and that we can assume without loss of generality that the ancilla 

is initialized to some fixed pure state), perform a unitary operation U on the 

joint system, and then discard some subsystem. 

More explicitly, this can be described as the map: 

                                   UUTr inBoutin 0...000...00            …   (II-75) 

where the state 0...00 is an ancilla state of arbitrary size (but without loss of 

generality has dimension at most N
2
), U is a unitary operation acting on the 

joint system, and B is some subsystem of the joint system. 

If B is the original ancilla system, then the superoperator does not change the 

Hilbert space of the system. In general, we can describe states that change the 
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dimension of the state space. It is shown that the action of such a superoperator 

(restricting attention to operators that do not change the Hilbert space) can be 

described by a finite sum 

                                                            

i

iiniin AA                         …  (II-76) 

where the Ai are called Kraus operators, which are linear operators9 on the 

same Hilbert space as ρin and satisfy  

                                                               

i

ii IAA                            …  (II-77) 

Conversely, every set of Kraus operators satisfying the completeness condition 

(Equation II-76) can be realized by a map of the form in Equation (II-75) for 

some unitary U (which is unique up to a final unitary on the system that is 

traced out). 

 

II-4-3- The Hadamard transformation 

One of the most basic transformations in quantum information science is the 

so-called Hadamard transformation whose actions on a qubit are 

                    10
2

1
1,10

2

1
0 '  HQH    …      (II-78) 

Applying this to the qubit lQ‟> above, results in  

                                                         0' QH                                …    (II-79) 

That is, a well defined value of the qubit. This is never possible with an 

incoherent mixture. 

 

II-4-4- Single Qubit Transformations: 

Insight in some of the most basic experimental procedures in quantum 

information physics can be gained by investigating the action of a simple 50/50 

beamsplitter. Such beamsplitters have been realized for many different types of 

particles not only for photons. For a general beamsplitters, as shown in Figure 

II-6, let us investigate the case of just two incoming modes and two outgoing 

modes which are arranged as shown in the figure. 
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For a. 50/50 beamsplitter a particle incident either from above or from below 

has the same probability of 50% of emerging in either output beam, above or 

below. Then quantum unitarily, that is, the requirement that no particles are lost 

if the beamsplitter is non-absorbing, implies certain phase conditions on the 

action of the beamsplitter with one free phase. A very simple way to describe 

the action of a beamsplitter is to fix the phase relations such that the 

beamsplitter is described by the Hadamard transformation of the equation  (II-

78). 

Lets us again assume that the incident state s the general qubit. 

                                          
ininin

Q 10                             …  (II-80) 

For a single incident particle this means that α is the probability amplitude to 

find the particle incident from above and   is the probability amplitude for 

finding the particle incident from below. Then the action of the beamsplitter 

results in the final state. 

                     )1)(0)((
2

1
outoutinout

aBaQHQ     …  (II-81) 

Where (α + β) is now the probability amplitude for finding in the particle the 

outgoing upper bean and (α - β) is the probability amplitude for finding it in the 

outgoing lower bean. For the specific case of α=0 or β=0, we find that the 

particle will be found with equal probability in either of the outgoing beams. 

For another specific case, α = β, we find that the particle will definitely be 

found in the upper beam and never in the lower beam. 

 

 

 

 

 

 

Figure II-6: The 50/50 beamspliter (top) and the corresponding diagram using 

the Hadamard transform (below) [24]. 
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It is interesting and instructive to consider sequences of such beamsplitters 

because they realise sequences of Hadamard transformations.  

Furthermore, the mirrors shown only serve to redirect the beams, they are 

assumed to have identical action on the two beams and therefore can be 

omitted in the analysis. The full action of the interferometer can now simply be 

described as two successive Hadamard transformations acting on the general 

incoming state of the equation (II-80). 

                                  
ininout

QQHHQ        …                   (II-82) 

This result from the simple fact double application of the Hadamard 

transformation of (II-78) is the identity operation. It means that the Mach 

Zehnder interferometer as sketched in Figure II-7, with beamsplitters realizing 

the Hadamard transformation at its output reproduces a state identical to the 

input. Let us consider again the extreme case where the input consists  of one 

beam only, that is, without loss of generality, let us assume a=1, the lower 

beams being empty then, according to the equation (II-82) the particle will 

definitely be found in the upper output. Most interestingly, this is because 

between the two beamsplitters the particle would have been found (with the 

correct relative phase) with equal probability in both beam paths. It is the 

interference of the two amplitudes incident on the final beamsplitter which 

results in the particle ending up with certainty in one of outgoing beams and 

never in the other. 

 

 

 

 

Figure II-7: A Mach-Zehner interferometer (top) is a sequence of two 

Hadamard transformations (bottom) [24]. 

 

In quantum information language, the output qubit of the empty MachZender 

interferometer will have a definite value if the input qubit also has only because 
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between the two Hadamard transformations the value of the qubit was 

maximally underlined. 

Another important quantum gate besides the hadamard gate is the phase shifter, 

which is introduced additionally in Figure II-8 into the Mach- Zehnder 

interferometer. Its operation is simple to introduce a phase change   to the 

amplitude of one of the two beams (without loss of generality we can assume 

this to be the upper beam because only relative phases are relevant). In our 

notation., the action of the phase shifter can be described by the unitary 

transformation. 

                                                      ,11,00   ie                   …  (II-83) 

Therefore the output can be calculated by successive application of all proper 

transformations to the input qubit:  

                                                   
inout

QHHQ                             …    (II-84) 

We will restrict our discussion again to the case where we have only one input 

namely 1 . And 0 , i.e., 0
in

Q . The final state then become 

                                           1101
2

1
0   ii eeHH                …  (II-85) 

This has a very simple interpretation. First we observe by inspection of the 

equation (II-74) that for 0 the value of the qubit is definitely “0”. On the 

other hand, for    the value of the qubit is definitely “1”. This indicates that 

the phase shift   is able to switch the output qubit has the value “0” is 

 2/cos2

0 P , and the probability that the qubit carries the value “1” is 

 2/sin 2

1 P . 

 

 

 

 

Figure II-8 : Top : Mach-Zehnder interferometer including a phase shifter   in                

one of the two beams. Bottom: The equivalent representation with Hadamard 

transformations and a phase shifter gate. 
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III-1- Introduction: 

Technological growth in the electronics industry has historically been measured by the 

number of transistors that can be crammed onto a single microchip. Unfortunately, all 

good things must come to an end; spectacular growth in the number of transistors on a 

chip requires spectacular reduction of the transistor size. For electrons in 

semiconductors, the laws of quantum mechanics take over at the nanometer scale, and 

the conventional wisdom for progress must be abandoned. This realization has 

stimulated extensive research on ways to exploit the spin (in addition to the orbital) 

degree of freedom of the electron, giving birth to the field of spintronics. Perhaps the 

most ambitious goal of spintronics is to realize complete control over the quantum 

mechanical nature of the relevant spins. This prospect has motivated a race to design 

and build a spintronics device capable of complete control over its quantum 

mechanical state, and ultimately, performing computations: a quantum computer. 

 

III-2- Electron Spin 

III-2-1- Toward the world of spin 

Two types of experimental evidence which arose in the 1920s suggested an additional 

property of the electron. One was the closely spaced splitting of the hydrogen spectral 

lines, called fine structure. The other was the Stern-Gerlach experiment which showed 

in 1922 that a beam of silver atoms directed through an inhomogeneous magnetic field 

would be forced into two beams [5]. Both of these experimental situations were 

consistent with the possession of an intrinsic angular momentum and a magnetic 

moment by individual electrons. Classically this could occur if the electron was a 

spinning ball of charge, and this property was called electron spin.  

Quantization of angular momentum had already arisen for orbital angular momentum, 

and if this electron spin behaved the same way, an angular momentum quantum 

number s = 1/2 was required to give just two states. This intrinsic electron property 

gives: 

Z-component of angular momentum: 
2

1
,  ssz mmS  …                            (III-1) 

           Magnetic moment: gS
m

e
s

2
 …                                             (III-2) 

http://hyperphysics.phy-astr.gsu.edu/Hbase/hyde.html#c4
http://hyperphysics.phy-astr.gsu.edu/Hbase/hyde.html#c4
http://hyperphysics.phy-astr.gsu.edu/Hbase/hyde.html#c4
http://hyperphysics.phy-astr.gsu.edu/Hbase/quantum/hydfin.html#c1
http://hyperphysics.phy-astr.gsu.edu/Hbase/spin.html#c5
http://hyperphysics.phy-astr.gsu.edu/Hbase/spin.html#c3
http://hyperphysics.phy-astr.gsu.edu/Hbase/spin.html#c4
http://hyperphysics.phy-astr.gsu.edu/Hbase/spin.html#c4
http://hyperphysics.phy-astr.gsu.edu/Hbase/spin.html#c4
http://hyperphysics.phy-astr.gsu.edu/Hbase/quantum/qangm.html#c1
http://hyperphysics.phy-astr.gsu.edu/Hbase/quantum/qangm.html#c2
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An electron spin s = 1/2 is an intrinsic property of electrons. Electrons have intrinsic 

angular momentum characterized by quantum number 1/2. In the pattern of other 

quantized angular momenta, this gives total angular momentum  

                                    
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The resulting fine structure which is observed corresponds to two possibilities for the 

z-component of the angular momentum. 

                                                    
2

1
zS             ...                                             (III-4) 

This causes an energy splitting because of the magnetic moment of the electron  

                                              gS
m

e
s

2
              …                                            (III-5) 

 

III-2-2- Electron Intrinsic Angular Momentum  

Experimental evidence like the Stern-Gerlach experiment suggests that an electron has 

an intrinsic angular momentum, independent of its orbital angular momentum [5]. 

These experiments suggest just two possible states for this angular momentum, and 

following the pattern of quantized angular momentum, this requires an angular 

momentum quantum number of 1/2.  

With this evidence, we say that the electron has spin ½. An angular momentum and a 

magnetic moment could indeed arise from a spinning sphere of charge, but this 

classical picture cannot fit the size or quantized nature of the electron spin. The 

property called electron spin must be considered to be a quantum concept without 

detailed classical analogy. The quantum numbers associated with electron spin follow 

the characteristic pattern:  

                               
2

1
,,

2

1
,1  smSSSS    …                                   (III-6) 

III-2-3- Electron Spin Magnetic Moment 

Since the electron displays an intrinsic angular momentum, one might expect a 

magnetic moment which follows the form of that for an electron orbit. The z-

http://hyperphysics.phy-astr.gsu.edu/Hbase/particles/lepton.html#c2
http://hyperphysics.phy-astr.gsu.edu/Hbase/spin.html#c3
http://hyperphysics.phy-astr.gsu.edu/Hbase/spin.html#c3
http://hyperphysics.phy-astr.gsu.edu/Hbase/spin.html#c3
http://hyperphysics.phy-astr.gsu.edu/Hbase/quantum/qangm.html#c1
http://hyperphysics.phy-astr.gsu.edu/Hbase/quantum/hydfin.html#c1
http://hyperphysics.phy-astr.gsu.edu/Hbase/spin.html#c4
http://hyperphysics.phy-astr.gsu.edu/Hbase/spin.html#c5
http://hyperphysics.phy-astr.gsu.edu/Hbase/amom.html#amp
http://hyperphysics.phy-astr.gsu.edu/Hbase/quantum/qangm.html#c2
http://hyperphysics.phy-astr.gsu.edu/Hbase/quantum/qangm.html#c1
http://hyperphysics.phy-astr.gsu.edu/Hbase/magnetic/magmom.html#c1
http://hyperphysics.phy-astr.gsu.edu/Hbase/spin.html#c3
http://hyperphysics.phy-astr.gsu.edu/Hbase/magnetic/magmom.html#c1
http://hyperphysics.phy-astr.gsu.edu/Hbase/quantum/orbmag.html#c1
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component of magnetic moment associated with the electron spin would then be 

expected to be Bz 
2

1
  

but the measured value turns out to be about twice that. The measured value is written 

                                               Bz g
2

1
      …                                                    (III-7) 

Where g is called the gyromagnetic ratio and the electron spin g-factor has the value g 

= 2.00232 and g=1 for orbital angular momentum. A natural constant which arises in 

the treatment of magnetic effects is called the Bohr magneton. The magnetic moment 

is usually expressed as a multiple of the Bohr magneton. 

magnetonBohrTevTJ
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e

e

B   /10*7883826.5/10*2740154.9
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524
 …     (III-8) 

The electron spin magnetic moment is important in the spin-orbit interaction which 

splits atomic energy levels and gives rise to fine structure in the spectra of atoms. The 

electron spin magnetic moment is also a factor in the interaction of atoms with external 

magnetic fields (Zeeman Effect).   

The term "electron spin" is not to be taken literally in the classical sense as a 

description of the origin of the magnetic moment described above. To be sure, a 

spinning sphere of charge can produce a magnetic moment, but the magnitude of the 

magnetic moment obtained above cannot be reasonably modeled by considering the 

electron as a spinning sphere. High energy scattering from electrons shows no "size" 

of the electron down to a resolution of about 10
-3

 fermi, and at that size a 

preposterously high spin rate of some 10
32

 radian/s would be required to match the 

observed angular momentum. 

 

III-2-3-1- Zeeman Interaction and Zeeman Effect 

An external magnetic field will exert a torque on a magnetic dipole and the magnetic 

potential energy which results is 

                                                    Bu *      …                                                 (III-9) 

The magnetic dipole moment associated with the orbital angular momentum is given 

by 

http://hyperphysics.phy-astr.gsu.edu/Hbase/spin.html#c1
http://hyperphysics.phy-astr.gsu.edu/Hbase/quantum/zeeman.html#c5
http://hyperphysics.phy-astr.gsu.edu/Hbase/quantum/orbmag.html#c2
http://hyperphysics.phy-astr.gsu.edu/Hbase/quantum/hydfin.html#c2
http://hyperphysics.phy-astr.gsu.edu/Hbase/quantum/hydfin.html#c1
http://hyperphysics.phy-astr.gsu.edu/Hbase/quantum/zeeman.html#c4
http://hyperphysics.phy-astr.gsu.edu/Hbase/magnetic/magfie.html#c1
http://hyperphysics.phy-astr.gsu.edu/Hbase/magnetic/magmom.html#c2
http://hyperphysics.phy-astr.gsu.edu/Hbase/magnetic/magmom.html#c1
http://hyperphysics.phy-astr.gsu.edu/Hbase/magnetic/magmom.html#c1
http://hyperphysics.phy-astr.gsu.edu/Hbase/magnetic/magmom.html#c1
http://hyperphysics.phy-astr.gsu.edu/Hbase/magnetic/magmom.html#c1
http://hyperphysics.phy-astr.gsu.edu/Hbase/quantum/orbmag.html#c1
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For magnetic field in the z-direction this gives 
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Considering the quantization of angular momentum, this gives equally spaced energy 

levels displaced from the zero field level by 
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This displacement of the energy levels gives the uniformly spaced multiplet splitting of the 

spectral lines which is called the Zeeman Effect.  

The magnetic field also interacts with the electron spin magnetic moment, so it 

contributes to the Zeeman effect in many cases. The electron spin had not been 

discovered at the time of Zeeman's original experiments, so the cases where it 

contributed were considered to be anomalous. The term "anomalous Zeeman effect" 

has persisted for the cases where spin contributes. In general, both orbital and spin 

moments are involved, and the Zeeman interaction takes the form 
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     …                          (III-13) 

The factor of two multiplying the electron spin angular momentum comes from the 

fact that it is twice as effective in producing magnetic moment. This factor is called the 

spin g-factor or gyromagnetic ratio. The evaluation of the scalar product between the 

angular momenta and the magnetic field here is complicated by the fact that the S and 

L vectors are both precessing around the magnetic field and are not in general in the 

same direction. The persistent early spectroscopists worked out a way to calculate the 

effect of the directions. The resulting geometric factor gL in the final expression above 

is called the Lande g factor. It allowed them to express the resultant splittings of the 

spectral lines in terms of the z-component of the total angular momentum, mj. The 

above treatment of the Zeeman effect describes the phenomenon when the magnetic 

fields are small enough that the orbital and spin angular momenta can be considered to 

be coupled. 

http://hyperphysics.phy-astr.gsu.edu/Hbase/quantum/qangm.html#c1
http://hyperphysics.phy-astr.gsu.edu/Hbase/quantum/zeeman.html#c1
http://hyperphysics.phy-astr.gsu.edu/Hbase/quantum/zeeman.html#c4
http://hyperphysics.phy-astr.gsu.edu/Hbase/quantum/zeeman.html#c5
http://hyperphysics.phy-astr.gsu.edu/Hbase/quantum/lande.html#c1
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III-2-3-2- The Electron Spin g-factor 

When the Zeeman Effect, the observed splitting was consistent with an electron orbit 

magnetic moment given by 


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2
  giving energy shift of form  
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where the splittings followed the z-component of angular momentum and the selection 

rules explained why you got a triplet of closely-spaced lines for the 3 > 2 transition of 

hydrogen. But when the effects of electron spin were discovered by Goudsmit and 

Uhlenbeck [5], they found that the observed spectral features were matched by 

assigning to the electron spin a magnetic moment 

                                                       


 S
m

e
gspin

2
        …                                 (III-15) 

where g is approximately 2. 

III-2-4- Spin orbit interaction: 

Although neglected up to this lecture, the interaction between the electron-spin and the 

orbital angular momentum must also be included in the atomic Hamiltonian. Such 

interaction is described according to the spin-orbit Hamiltonian defined as follows, 
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Where V is the Coulombic potential of the electron in the field of the atom. Note that 

the spin-orbit interaction is proportional to


SL . .  

A classical description of such interaction also gives a perturbation proportional 

to


SL . . This is because from the reference frame of the electron, the nucleus is a 

http://hyperphysics.phy-astr.gsu.edu/Hbase/quantum/zeeman.html#c1
http://hyperphysics.phy-astr.gsu.edu/Hbase/quantum/orbmag.html#c2
http://hyperphysics.phy-astr.gsu.edu/Hbase/quantum/orbmag.html#c2
http://hyperphysics.phy-astr.gsu.edu/Hbase/quantum/orbmag.html#c2
http://hyperphysics.phy-astr.gsu.edu/Hbase/spin.html#c4
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moving charge that generates a magnetic field B, proportional to


L . Such magnetic 

field interacts with the spin magnetic moment 





Sm

e
m

e

s . Therefore, the interaction 

between B and ms is proportional to


SL . . 

III-3- General concepts in spin-transport 

III-3-1- Basic transport mechanism in a magnetic device 

Although these concepts are discussed in more details in [21], now let us briefly 

maintain some of these concepts. Let us consider the prototypical GMR (Giant 

magnetoresistance) device: the spin-valve. A spin valve is formed by two magnetic 

layers separated by a non-magnetic spacer. Usually the magnetic layers are metallic 

(typically Co, Ni, Fe or some permalloy), while the spacer can be either a metal, a 

semiconductor, an insulator or a nanoscale object such as a molecule or an atomic 

constriction. The typical operation of a spin-valve is schematically illustrated in 

Figure III-1. Usually the two magnetic layers have a rather different magnetic 

anisotropy with one layer being strongly pinned and the other free to rotate along an 

external magnetic field. In this way the magnetotransport response of the device can be 

directly related to the direction of the magnetization of the free layer. In our 

discussion, we consider only the two extreme cases in which the two magnetization 

vectors are either parallel (P) or antiparallel (AP) to each other. 

 

Figure III-1: Scheme of a spin-valve in the two resistance states: a) high resistance, 

b) low resistance. [14] 

 

spacer 

spacer 

http://scienceworld.wolfram.com/physics/SpinMagneticDipoleMoment.html
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To fix the idea consider a Co/Cu/Co spin-valve, and let us follow the path of both the 

electron spin species across the device. The Fermi surfaces line up for both the P and 

AP cases are presented in FigureIII-2. In the AP case the magnetization vector of the 

two magnetic layers points in opposite directions. This means that an electron 

belonging to the majority band in one layer will belong to the minority in the other 

layer. Consequently in the AP case both the spin currents (usually called the spin 

channels) arise from electrons that have travelled within the Fermi surface of Cu and 

of both spins of Co. In contrast in the P case the two spin currents are rather different. 

The spin up current is made from electrons that have travelled within the Fermi 

surfaces of Cu and of the majority spin Co, while the down spin current from electrons 

that have traveled within the Fermi surfaces of Cu and of the minority spin Co. If we 

naively assume that the total resistance of the device can be obtained by adding in 

series the resistances of the materials forming the device (resistor network model) we 

obtain: 

RAP = )(
2

1
RRR

cucoco



,          RP = 1)

2

1

2

1
( 





 RRRR

cucocuco
        …         (III-17) 

 where RP and RAP are the resistance for the parallel and antiparallel configuration 

respectively, R
Cu

 is the resistance of the Cu layer and coR


and coR


are the resistance of 

the Co layer for the majority (↑) and the minority (↓) spins. Usually coco RR


 , hence 

RP < RAP. This produces the GMR effect (see III-4-1). 

Conventionally the magnitude of the effect is given by the GMR ratio rGMR defined as: 

rGMR =(RAP − RP)/RP…                                         (III-18). 

This is usually called the “optimistic” definition (since it gives large ratios). An 

alternative definition is obtained by normalizing the resistance difference by either RAP 

or RP + RAP; in this last case rGMR is bounded between 0 and 1. 

The discussion so far is based on the hypothesis of treating the spin-valve as a resistor 

network. This is strictly true only if λemf < lυ < L, where L is the typical thickness of 

the layers forming the spin-valve, but in general adding resistances in series may not 

be correct. However it is also clear that the magnitude of the magnetoresistance 

depends critically on the asymmetry of the two spin currents in the magnetic material, 

which ultimately depends on its electronic structure. It is therefore natural to introduce 
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the concept of spin polarization P of a magnetic metals as P = (I↑ − I↓)/ (I↑ + I↓), where 

Iσ is the spin-σ contribution to the current. 

 

 

 

 

 

 

 

 

 

 

 

Figure III-2: Magnetoresistance mechanism in a Co/Cu/Co spin valve (panel a) in the 

two spin current approximation. [14] 

 

III-3-2- Transport regimes: 

the relation between the spin-polarization of a magnetic material and its electronic 

structure depends critically on the transport regime that one considers. 

 

III-3-2-1- Diffusive Transport 

In diffusive transport the phase coherence length is rather short and quantum 

interference is averaged out. The transport is then described by the Boltzmann’s 

equations, which govern the evolution of the electron momentum distribution function. 

Within the relaxation time approximation, assuming that the relaxation times does not 

depend on the electron spin the current is simply proportional to NFv
2

F, where NF and 

vF are the density of states at the Fermi level and the Fermi velocity respectively. 

This leads us to the “ 2Nv ” definition of the spin-polarization: 
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III-3-2-2- Ballistic Transport 

In this case lυ is much longer than the size of the magnetic device. The energy is not 

dissipated as resistance in the device and the current can be calculated using the 

Landauer formalism. Also, the current, are simply proportional to NFvF. Moreover in 

the Landauer approach, the electron velocity and the density of states exactly cancel. 

This means that NFvF is just an integer proportional to the number of bands crossing 

the Fermi level in the direction of the transport, or alternatively to the projection of the 

Fermi surface on the plane perpendicular to the direction of the transport. 

This leads to the “Nv” definition of spin-polarization:  
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III-3-2-3- Tunneling 

It is generally acknowledged that in tunneling experiments the GMR ratio of the 

specific device is given by some density of states. This was firstly observed by Jullier 

almost three decades ago and it is based on the fact that typical tunneling times are 

much faster then L/vF, with L being the length of the tunneling barrier. This means that 

the electron velocity in the metal is irrelevant in the tunneling process. Although it is 

now clear that the relevant density of states for magneto-tunneling processes is not 

necessarily that of the bulk magnetic metal, but it must take into account of the 

structure of the tunneling barrier and of the bonding between the barrier and the metal, 

we can still introduce the “N” definition of polarization:  
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P      …                                        (III-21) 

III-3-3- Crossover between different transport regimes 

Clearly the three definitions may give rise to different spin-polarizations, since the 

relative weight of N and v is different. In particular PN favours electrons with high 

density, while PNv
2
 electrons with high mobility. In magnetic transition metals, where 

high mobility low density s electrons coexist with low mobility high density d 

electrons, these differences can be largely amplified. In principle one can speculate 

around materials that are normal metals according to one definition and half-metals 

according to another. This is for instance the case of La0.7A0.3MnO3 with A=Ca, Sr, .., 
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in which the majority band is dominated by delocalized example states and the 

minority by localized t2g electrons. Therefore La0.7A0.3MnO3 is a conventional 

ferromagnet according to the definitions PNv and PN and it is an half-metal according to 

PNv
2
. 

  

III-3-3-1- Spin-transport at the atomic level 

The main idea is now to shrink the dimensions of the device in such a way that it’s 

sensitive part will be of a size comparable with the Fermi wave length. In this case the 

transport is ballistic and depends critically on the entire device. Therefore it can be 

hardly inferred from the properties of its components, such as the spin-polarization of 

the current/voltage electrodes. 

Let us use again the spin-valve as a prototypical example, and consider two magnetic 

bulk contacts separated by an atomic scale object. This can be a point contact or for 

instance a molecule. There are two main differences with respect to the bulk case:  

1) the Fermi surface of the spacer can be highly degenerate, in the extreme limit 

collapsing into a single point, 2) the coupling between the magnetic surfaces and the 

spacer can be strongly orbital dependent. The crucial point is that in both cases the 

transport characteristics will be given by local properties of the Fermi surfaces of the 

magnetic material, which means either from a particular region in k-space, or a 

particular orbital manifold. 

Consider Figure III-3 where we present an hypothetical device formed by two 

metallic surfaces sandwiching a spacer whose Fermi surface is a single point. For the 

sake of simplicity, we consider a model ferromagnet, namely a single orbital two-

dimensional simple cubic lattice, with Fermi surfaces centred at the band center and at 

the band edges respectively for majority and minority spins. In this case the Fermi 

surface of the spacer overlaps only with the majority Fermi surface of the magnetic 

material. For this reason we expect zero transmission for the minority spins and for the 

antiparallel configuration, leading to an infinite GMR ratio. 
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Figure III-3: Magnetoresistance mechanism in a spin valve constructed with an 

atomic scaled spacer in the two spin current approximation. [15] 

 

III-3-3-2- Molecular Spin transport 

The growing interest in interfacing conventional electronic devices with organic 

compounds has brought to the construction of spin-valves using molecules as a spacer. 

These include carbon nanotubes, elementary molecules and polymers. Spin-transport 

through these objects can be highly non-conventional and vary from metallic-like, to 

Coulomb-blockade like, to tunneling-like. Moreover the molecule can be either 

chemisorbed of physisorbed depending on the molecular end groups, and the same 

spacer can give rise to different transport regimes. 

In this case the simple requirement of local charge neutrality is not enough to describe 

the physics of the spacer and an accurate description of the drop of the electrostatic 

potential across the device is needed. Note that the transport can still be completely 

ballistic, in the sense that the electrons do not change their energy while crossing the 

spacer. 

A more complicate situation arises for polymer-like spacers. In most polymers in fact 

the transport is not band transport but it is due to hopping and it is associated with the 

formation and propagation of polarons. Clearly this adds additional complication to the 

problem since now the electronic and ionic degrees of freedom cannot be decoupled in 
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the usual Born-Oppenheimer approximation. At present there is very little theoretical 

work on spin-transport in polymers. 

 

III-4- Transport Theory: Linear Response 

III-4-1- GMR 

As already mentioned the GMR effect is the drastic change in resistance of a magnetic 

multilayer when a magnetic field is applied. This is related to the change of the mutual 

orientation of the magnetic moments of the magnetic layers. In metallic systems, 

adjacent magnetic layers are magnetically coupled to each other, through the non-

magnetic ones. The sign of this exchange coupling, discovered by Stuart Parkin in the 

early nineties [17], is an oscillatory function of the separation between the magnetic 

layers, whose details depend on the Fermi surface of the non-magnetic one. In 

practice, one can tune the thickness of the non-magnetic layers to obtain an overall 

antiferromagnetic (AF) state of the multilayer. In this situation the multilayer is in a 

high resistance state. When a magnetic field strong enough to align the magnetic layer 

along the same direction is applied, thus overcoming the antiferromagnetic exchange 

coupling, the multilayer resistance drops. Now the system is in a ferromagnetic (FM) 

configuration corresponding to a low resistance state. The relative change in resistance 

is the GMR effect. Early GMR experiments have been conducted with the so-called 

current in the plane configuration (CIP) (Figure III-4) in which the current flows in 

the plane of the layers. In these experiments the typical cross sections are of the order 

of 1 mm
2
 and the transport is mainly diffusive. This is the favourite configuration for 

devices, since the resistances are rather large and they can be measured with 

conventional four-probe technique. 

An important breakthrough was the possibility to study the transport of a multilayer 

with the current flowing perpendicular to the planes (CPP GMR). In this case the 

resistances are rather small and difficult to measure, and one must either use 

superconducting contacts or shape the samples to very small cross sections. In these 

experiments the electrons have to cross the entire multilayer over distances smaller 

than 1 μm. The spin filtering is more effective and the transport can be phase-coherent. 



Chapter III                                                              The use of spin in quantum computers 

U.H.B.C 69 

The CPP arrangement is preferred by theoreticians since ab initio calculations can be 

carried out. 

 

 

 

 

 

 

Figure III-4: Schematic representation of a typical GMR experiment: a) Current In 

Plane (CIP) configuration, b) Current Perpendicular to the Planes (CPP) configuration. 

[16] 

 

III-4-2- TMR (Tunnelling magnetoresistance) 

Despite the indisputable success of the CPP GMR either as a scientific tool or as 

building block for devices, it presents some disadvantages in practical applications. 

Firstly, since the layer thicknesses are rather small there is the need of measuring the 

resistance with sophisticated techniques such as superconducting contacts, which 

clearly are not practical for applications. Secondly it is generally difficult to 

magnetically decouple the layers, large magnetic fields are needed and complex 

micromagnetic effects are unavoidable. In order to overcome these difficulties a much 

simpler structure has been proposed. This is a tunneling junction, formed by two 

magnetic layers sandwiching an insulating material and connected to two 

current/voltage probes. The two layers are now magnetically decoupled and 

engineered to have different coercive fields; hence their mutual orientation can be 

changed by applying a tiny magnetic field. Also in this case the high current state is 

the ferromagnetic and the low current state the antiferromagnetic. The quality of the 

device is measured by the tunneling magnetoresistance ratio (TMR) using the same 

definition of that for GMR. 

The main difference between GMR and TMR is that in TMR the current is a tunneling 

current and there is no conductance associated with the insulating barrier. From the 

point of view of the scattering theory this means that not only the match between the 
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asymptotic wave-functions through the scattering region is important, but also how 

these wave-functions decay within the tunneling barrier. 

 

III-4-3- Spin-transport through carbon nanotubes and nanowires 

There was a considerable effort in combining the field of molecular and spin 

electronics. The typical device consists in a spin-valve that uses a molecular object as 

spacer. Potentially this has several advantages compared to more conventional 

materials since molecules are free of strong spin-flip scattering mechanisms such as 

spin-orbit and hyperfine interaction or scattering to magnetic impurities. In this race to 

organic spin-devices the use of carbon nanotubes occupies an important place.  

Carbon nanotubes are almost defect-free graphene sheets rolled up in forming 1D 

molecules with enormous aspect ratios. Their conducting state depends on their 

chirality, however in the metallic configuration they are ideal conductors with a 

remarkably long phase coherence length. An important aspect is that the relevant 

physics at the Fermi level is entirely dominated by the px orbitals, which are radially 

aligned with respect to the tube axis. These include the bonding properties with other 

materials and between tubes. Therefore carbon nanotubes appear as an ideal 

playground for investigating both GMR and TMR through molecules. In fact one can 

expect that two tubes with different chirality will bond to a magnetic surface in a 

similar way, allowing us to isolate the effects of the molecule from that of the contacts. 

Indeed TMR-like transport through carbon nanotubes has been experimentally 

reported by several groups. [18,19,20,21,22] 

The transport through an interface between such a magnetic metal and the nanotube is 

determined by the overlap between the corresponding Fermi surfaces. Three possible 

scenarios are possible. First the Fermi-wave vector of the carbon nanotube is smaller 

than both 

Fk and 

Fk  (Figure III-5-a). In this case in the magnetic metal there is 

always a k-vector that matches the Fermi-wave vector of the nanotube for both spins. 

Therefore both spins can be injected into the tube and the total resistance will be small 

and spin-independent. Secondly the Fermi-wave vector of the carbon nanotube is 

larger than both 

Fk and 

Fk  (Figure III-5-b). In this case there are no available states in 

the metallic contact whose wave-vectors match exactly the Fermi wave-vector of the 
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carbon nanotube. Therefore in the zero-bias zero temperature limit the resistance is 

infinite. Nevertheless as one increases the temperature, phonon assisted transport starts 

to be possible. Spin electrons can be scattered out of the Fermi surface into states with 

large longitudinal momentum. At temperature T the fraction of electrons with energy 

above EF is simply proportional to the Fermi distribution function. However, because 

of the exchange energy, spin-up electrons will possess higher momentum than spin-

down. Therefore one can find more spin-up states with a longitudinal momentum 

matching the one of the nanotube than spin-down states. This gives a temperature-

induced spin-dependent resistance. Hence one should expect that the increase of the 

temperature will decrease the resistance for spin-up electrons, leaving unchanged that 

of spin-down electrons. 

Finally if the Fermi wave-vector of the carbon nanotube is larger than 

Fk but smaller 

than 

Fk  (Figure III-5-c), only the majority electrons can enter the nanotube and the 

system becomes fully spin-polarized. In this situation a spin-valve structure made by 

magnetic contacts and carbon nanotube as spacer is predicted to show an infinite GMR 

at zero temperature, similar to the case of the half-metals. The increase of the 

temperature will produce a degradation of the polarization because also the spin-down 

electrons may occupy high energy states with large longitudinal momentum. Both the 

spins can be injected and the spin-polarization will depend on the number of occupied 

states with longitudinal momentum matching the one of the nanotube. 

 

 

 

 

 

 

 

Figure III-5: Cartoon showing the levels alignment in the magnetic point contact. The 

solid (dashed) line denotes a majority (minority) spin molecular state. a) symmetric 

case at zero bias, b) symmetric case at positive bias, and c) symmetric case at negative 

bias. [18] 
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Two important aspects must be pointed out. First all these considerations are based on 

the assumption of perfectly crystalline systems. This may not be true in reality and the 

effects of breaking the translational invariance must be considered. From a qualitative 

point of view disorder will smear the Fermi surface and eventually produce some 

states with large longitudinal momentum. This will improve the conductance through 

the nanotube, even if its spin-polarization will be in general dependent on the nature of 

disorder. 

Second, in contacts made from transition metals the simple parabolic band model 

introduced here is largely non-realistic. The Fermi surface of magnetic metal can 

comprise different manifolds with different orbital components and the degree of 

polarization of a junction depends upon how the different manifolds couple to the 

nanotube. In this case, simple theories are only speculative and more realistic 

bandstructure calculations are needed. These are rather problematic since the problem 

includes the need of describing transition metal leads and a molecule comprising a 

large number of degrees of freedom. 

 

III-5- Conception of quantum computers and DiVincenzo criteria: 

The fields of semiconductor physics and electronics have been successfully combined 

for many years. The invention of the transistor meant a revolution for electronics and 

has led to significant development of semiconductor physics and its industry. More 

recently, the use of the spin degree of freedom of electrons, as well as the charge, has 

attracted great interest. In addition to applications for spin electronics (spintronics) in 

conventional devices, for instance based on the giant magneto-resistance effect  and 

spin-polarized field-effect transistors, there are applications that exploit the quantum 

coherence of the spin. This was encouraged by ground breaking experiments that 

showed coherent spin transport over long distances in semiconductors and long 

electron-spin dephasing times, on the order of 100 nanoseconds. In addition, spin-

polarized carrier injection from magnetic to non-magnetic semiconductors has been 

demonstrated. Since the electron spin is a two-level system, it is a natural candidate for 

the realization of a quantum bit (qubit). The confinement of electrons in 

semiconductor structures like quantum dots allows for better control and isolation of 
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the electron spin from its environment. Control and isolation are important issues to 

consider for the design of a quantum computer. 

The successful implementation of a quantum computer demands that some basic 

requirements be fulfilled. These are known as the DiVincenzo criteria [35] and can be 

summarized in the following: 

1- Information storage–the qubit: We need to find some quantum property of a 

scalable physical system in which to encode our bit of information, that lives long 

enough to enable us to perform computations. 

2- Initial state preparation: It should be possible to set the state of the qubits to 0 

before each new computation. 

3- Isolation: The quantum nature of the qubits should be tenable; this will require 

enough isolation of the qubit from the environment to reduce the effects of 

decoherence. 

4- Gate implementation: We need to be able to manipulate the states of individual 

qubits with reasonable precision, as well as to induce interactions between them in a 

controlled way, so that the implementation of gates is possible. Also, the gate 

operation time τG has to be much shorter than the decoherence time D , so that 

τG/ D <<r, where r is the maximum tolerable error for quantum error correction schemes 

to be effective. 

5- Readout: It must be possible to measure the final state of our qubits once the 

computation is finished, to obtain the output of the computation. 

To construct quantum computers of practical use, we emphasize that the scalability of 

the device should not be overlooked. This means it should be possible to enlarge the 

device to contain many qubits, while still adhering to all requirements described 

above. In this respect, very promising schemes for quantum computation are the 

proposals based on solid-state qubits, which could take advantage of existing 

technology. 
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III-6- Experimental achievements 

III-6-1- Single and coupled quantum dots 

We first discuss different experimental approaches to construct semiconductor 

quantum dot structures that enable control over the spin degree of freedom on the level 

of a single electron. The precise control of the number of excess electrons in a 

quantum dot is a necessary prerequisite to achieve control over the spin states of 

interest. The addition of an electron from the surrounding material to a negatively 

charged dot requires the charging energy δec to overcome the electrostatic energy of 

other electrons in the dot. The charging energy δec depends on the number N of 

charges confined in the dot. The regime (gate voltages) where the injection of 

additional electrons into the dot is blocked due to δec is known as the Coulomb 

blockade regime (Figure III-6). In recent years, a great deal of experimental effort has 

focused on the single-electron regime (N = 1) using different types of quantum dot 

structures. This regime provides experimental access to a spin 1/2 in the dot. 

 

 

 

 

 

 

 

 

 

 

Figure III-6: Device (right) used to read-out the charge state of a quantum dot with 

a quantum point contact (QPC) [25] 

 

As an experimental achievement of this, quantum dots can be created by electrical 

gating of a 2DEG (two dimensional electron gas) via lithographically defined gate 

electrodes (Figures III-7, III-8). Applying a negative voltage to the gates depletes the 

2DEG underneath them, such that quantum dots are formed in the regions surrounded 
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by the gates. Electrically gated dots are typically characterized by an electron level 

spacing δe ≈ 0.1 . . . 2 meV, a charging energy δec ≈ 1 . . . 2 meV, and a dot diameter l 

≈ 10 . . .1000 nm. Typical materials for such dots include GaAs, InSb, and Si. Control 

of the coupling of electrically gated GaAs quantum dots has been demonstrated and 

investigated in-depth in transport experiments. 

 

 

 

 

 

 

 

Figure III-7: (a) Scanning electron micrograph of a gated double dot structure with 

two adjacent quantum point contacts (QPCs). (b) Charge stability (“honeycomb”) 

diagram of the double quantum dot. [26] 

 

As an alternative to electrical gating, etching techniques can also be applied to achieve 

lateral confinement in the plane of a 2DEG. For example, Tarucha et al. have produced 

gated vertical quantum dots by etching a pillar structure which contained a double-

barrier heterostructure with an InGaAs quantum well as the 2DEG. Figures III-8, III-

9 show structures containing dots of this type. 

Further, quantum dot structures can be grown by self-assembly, e.g., using the 

Stranski-Krastanov growth technique [26]. In this technique, self-assembled dot 

islands form spontaneously during epitaxial growth due to a lattice mismatch between 

the dot and the substrate material. Typical sets of dot/substrate materials are 

InAs/GaAs, Ge/Si(100), GaN/AlN, InP/GaInP, and CdSe/ZnSe. The electron level 

spacing of this type of dot is typically δe ≈ 30 . . . 50 meV with a charging energy δec 

≈ 20 meV, a diameter l ≈ 10 . . . 50 nm, and a height d ≈ 2 . . . 10 nm of the dot. Small 

selfassembled dots typically have a pyramidal shape with four facets, whereas larger 

dots (containing, e.g., 7 monolayers of InAs) form multi-faceted domes. 
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Figure III-8: (a) SEM micrograph of an electrically gated double quantum dot 

structure with neighbouring QPC charge detectors. (b) Large-scale plot of the 

differential conductance dGS2/dV6 as a function of the voltages V2 and V6 applied to 

gates 2 and 6, respectively. In (c) and (d), GD and dGS2/dV6 are shown, respectively, 

as a function of V2 and V6 in the region close to the (1,0) to (0,1) transition. [27] 

 

If pyramidal self-assembled dots are covered with a thin layer of the substrate material 

(called the capping layer), the capped dots take-on an elliptical (or rarely, even a 

circular) shape. Additionally, these dots exert strain on the capping layer. If quantum 

dots are grown on the capping layer, they tend to grow on the strain field on top of the 

capped dots rather than at random positions. This enables the growth of vertically 

coupled quantum dots, where the thin capping layer acts as a barrier between the two 

dots (Figure III-10-a). A typical difficulty related to Stranski-Krastanov self 

assembled dots is the intrinsic randomness of the growth process, as shown in Figure 

III-10-b. Yet, prepatterning of the substrate has been shown to be a way to achieve a 

well-defined growth position of the first dot layer (Figure III-10-c), paving the way to 

site-controlled arrays of single or coupled dots. 
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Figure III-9: Different designs for etched structures of coupled quantum dots. [28] 

 

III-6-2- Charge and spin control in quantum dots 

Precise control over the number of confined electrons has been demonstrated several 

years ago in InGaAs self-assembled dots, in gated vertical quantum dots, and also in 

electrostatically defined single and double dots in GaAs. The single-electron states of 

quantum dots in the low-energy range have been shown to be in agreement with a shell 

model. Because the quantum dot confinement is much stronger along the growth 

direction than perpendicular to it, the dot potential is effectively two-dimensional. The 

low-lying confined electron states can be well-approximated by the states of a two-

dimensional harmonic oscillator. Thus, the single-particle ground state has (s) 

symmetry and the first excited shell has (p) symmetry. If an external magnetic field is 

applied perpendicular to the quantum dot plane, new harmonic oscillator states (Fock-

Darwin states) are the exact eigenfunctions, with a frequency that increases with the 

magnetic field [30]. 

The degeneracy of the two spin states   and  is lifted in the presence of a 

magnetic field due to the Zeeman interaction. This makes the two states energetically 

distinguishable (Figure III-11). The precise control of the occupation number of 

electrons in single and double quantum dots has enabled experiments on single spins 

in quantum dots. 
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Figure III-10: Self-assembled InAs quantum dot structures. (a) AFM picture of dots 

grown at random locations. (b) Transmission electron microscope (TEM) cross-section 

of vertically stacked dots (indicated by arrows), ordered along the growth axis. (c) 

AFM picture of laterally ordered dots. This image was generated after prepatterning of 

the substrate. (d) Sketch of a three-dimensional lattice of dots that could be obtained 

by combining the growth methods of (b) and (c). [29] 

 

III-6-3- Spin relaxation 

Recently, expectations for the stability of spin qubits in quantum dots have grown 

considerably as progressively longer spin lifetimes have been reported. A series of 

works on electron spin relaxation in quantum dots started with Fujisawa et al. who 

reported a triplet-to-singlet relaxation time of τS−T = 200 μs in vertical quantum dots. 

More recently, a lower bound on the singlet-triplet relaxation time has been measured 

in lateral dots, giving τS−T ≥ 70 μs. Very quickly thereafter, a substantially longer 

relaxation time (τS−T = (2.58 ± 0.09) ms) was measured independently using a novel 

spin readout technique. Several groups have since measured T1 for single electron 

spins. For electrostatically-defined GaAs dots, Hanson et al. [27] have reported a 

lower bound T1   50 μs at a magnetic field of B = 7.5 T which was subsequently 

topped by Elzerman et al [29], with T1 ≈ (0.85 ± 0.11) ms at B = 8 T. In these 

experiments, a two-level pulse technique for the quantum dot gate voltage has been 
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applied to inject an electron into the dot and to extract it later. In a certain parameter 

range, the Zeeman splitting of the two spin states is sufficient that tunnelling into or 

out of the dot is not possible for one of the two spin states (Figure III-11). This 

enables spin detection via the detection of charge in the quantum dot, which has been 

realized through an adjacent quantum point contact (QPC). In these experiments, the 

QPC (Quantum Point Contact) has been tuned via a gate voltage to a conductance G ≈ 

e
2
/h, where the modulation of the current IQPC through the QPC has maximum 

sensitivity to changes in the electrostatic environment, including the number of 

charges in the quantum dot. Recently, Kroutvar et al. [29] established a lower bound 

T1   20 ms at T = 1 K and B = 4 T for In(Ga)As self-assembled dots. In this 

experiment, an optical charge storage device has been excited with circularly polarized 

laser excitation. The larger level spacing of self-assembled dots (compared to gated 

GaAs dots) is responsible for the longer T1-time seen in this experiment which is 

limited by spin-orbit coupling. 

 

 

 

 

 

 

 

 

 

 

 

Figure III-11 : Quantum dot spin filter. (a) Only electrons in the state   are   

transported through the dot. (b) Only the spin ground state  , can pass through the 

(empty) dot. In (c) and (d), the measured differential conductance dI/dVSD is shown for 

the cases (a) and (b), respectively, with tunnelling current I and source-drain voltage 

VSD. In (e), we show a scheme of the theoretically predicted dI/dVSD [30] 
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III-6-4- Optical interaction and optical readout of spins 

In this section, we first sketch some basics of optical transitions in quantum dots and 

then focus on the optical detection of spin states. The currently very active field of 

ultrafast laser technology suggests that single spin states can be optically detected and 

manipulated within very short times (picoseconds or even femtoseconds), several 

orders of magnitude faster than in schemes based on the transport of electric charge. 

Via the absorption of a photon, an electron in a confined valence-band state can be 

excited to a confined conduction-band state. For such inter-band transitions, optical 

selection rules apply and establish conditions on the quantum numbers of the optically 

coupled states. Provided the spin-orbit interaction is nearly isotropic, then it is a good 

approximation that the total angular momentum squared, J
2
 = (L + S)

2
, provides a good 

quantum number in semiconductors. Photons with circular polarization σ
±
 carry an 

angular momentum with projection ±1 (in units of  ) along their propagation 

direction. For optical interactions, the total angular momentum is conserved, linking 

the spin of electrons and the polarization of photons. For a two-dimensional quantum 

dot with circular confinement, the z component Jz of J is a good quantum number. 

When Jz is a good quantum number in GaAs or InAs dots, the energetically lowest 

optical excitation at zero magnetic field typically includes two degenerate valence 

band states with total angular momentum projections Jz = ±3/2, which are also called 

heavy-hole (hh) states. A circularly polarized photon that is irradiated along the 

quantization axis z of J can excite one of the hh states to one of the conduction-band 

states with spin +1/2 or −1/2. For a given circular polarization, only one combination 

of these states satisfies the selection rules. This leads to a direct correspondence 

between the circular polarization of the photon and the spin of the optically excited 

electron. Taking advantage of this for the readout of spin states, light-emitting diodes 

(“spin-LEDs”) have been fabricated, where the polarization of the emitted photons 

indicates the spin polarization of the electrons (or holes) injected into the spin-LED. A 

further step in nanoscale photonic and electronic technology has been taken recently 

by the growth of semiconductor nanowire superlattices. By modulating the reactants 

during catalytic growth of a nanowire, the nanowire finally consists of segments of 

different materials, e.g., Si and SiGe, InAs and InP, or GaAs and GaP. By alternating 
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the two different materials, a superlattice can be formed. The combination of n- and p-

type semiconductors, e.g., n-Si and p-Si or n-InP and p-InP, enables the bottom-up 

assembly of nanoscale (spin-)LEDs. 

 

III-6-5- Spin initialization 

To initialize the spin qubits, a strong polarization can be achieved by applying a strong 

magnetic field B, such that the Zeeman splitting is larger than the thermal energy. 

Further, electrons with parallel spins can also be injected via spin-polarized currents. 

The injections of spins from ferromagnetic semiconductors into normal 

semiconductors have been reported with polarizations up to 90%. Initialization can 

also be achieved using a spin filter or by optical schemes. 

 

 

 

 

 

 

 

Figure III-12: Experimental demonstration of a spin filter. The figures (a) and (b) 

show the focusing peak height as a function of the quantum dot gate voltage Vg. [30] 

 

III-7- Proposals for quantum computing 

The first proposals for quantum computing made use of cavity quantum 

electrodynamics (QED), trapped ions, and nuclear magnetic resonance (NMR). All of 

these proposals benefit from potentially long decoherence times, relative to their 

respective gating times. The long decoherence times for these proposals and existing 

experimental expertise led to quick success in achieving experimental realizations. A 

conditional phase gate was demonstrated early-on in cavity-QED systems. The two 

qubit controlled “Not gate”, which, along with single-qubit rotations allows for 

universal quantum computation has been realized in single-ion and two-ion versions. 

The most remarkable realization of the power of quantum computing to date is the 
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implementation of Shor’s algorithm to factor the number 15 in a liquid-state NMR 

quantum computer. In spite of their great successes, the proposals based on cavity-

QED, trapped ions and NMR may not satisfy the first DiVincenzo criterion (see 

chapter III-5). Specifically, these proposals may not meet the requirement that the 

quantum computer can be scaled-up to contain a large number of qubits. The 

requirement for scalability motivated the Loss-DiVincenzo proposal for a solid-state 

quantum computer based on electron spin qubits. This proposal was quickly followed 

by a series of proposals for alternate solid-state realizations and realizations for 

trapped atoms in optical lattices that may also be scalable. 

 

III-7-1- Quantum dot quantum computing 

The qubits of the Loss-DiVincenzo quantum computer are formed from the two spin 

states (  , ) of a confined electron. The original proposal focuses on electrons 

localized in quantum dots. These dots are typically generated from a two-dimensional 

electron gas, in which the electrons are strongly confined in the vertical direction. 

Lateral confinement is provided by electrostatic top gates, which push the electrons 

into small localized regions (Figures III-13-a  and III-14-b). 

 

 

 

 

 

 

 

Figure III-13: a- Two neighbouring electron spins confined to quantum dots b-  An 

array of exchange-coupled quantum dots. [31] 

 

Initialization of the quantum computer can be achieved by allowing all spins to reach 

their thermodynamic ground state at low temperature T in an applied magnetic field B 

i.e., virtually all spins will be aligned if the condition  

                                                     |gμBB|  kBT      …                                         (III-22) 
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is satisfied g factor , μB is the Bohr magneton, and kB is the Boltzmann’s constant. 

Single-qubit operations can be performed, in principle, by changing the local effective 

Zeeman interaction at each dot individually. To do this may require large magnetic 

field gradients, g-factor engineering, magnetic layers (Figure III-13-b), the inclusion 

of nearby ferromagnetic dots, polarized nuclear spins, or optical schemes. In the Loss-

DiVincenzo proposal, two-qubit operations are performed by pulsing the electrostatic 

barrier between neighbouring spins. When the barrier is high, the spins are decoupled. 

When the inter-dot barrier is pulsed low, an appreciable overlap develops between the 

two electron wave functions, resulting in a non-zero Heisenberg exchange coupling J. 

The Hamiltonian describing this time-dependent process is given by  

                                            H(t) = J(t)SL·SR.     …                                          (III-23) 

wher SR is the right spin and SL is the left spin. This Hamiltonian induces a unitary 

evolution given by the operator                                   

                                   U= T exp 


dttHi )( ,         …                                      (III-24) 

where T is the time-ordering operator. If the exchange is pulsed on for a time τG such 

that 

                                     



sJdttJ 0)( ,           …                                       (III-25)  

the states of the two spins, with associated operators SL and SR, as shown in (Figure 

III-13-a), will be exchanged. This is the swap operation. Pulsing the exchange for the 

shorter time τG/2 generates the “square-root of swap” operation, which can be used in 

conjunction with single qubit operations to generate the controlled-Not (see chapter 

IV) gate. 

In addition to the time scale τG, which gives the time to perform a two-qubit operation, 

there is a time scale associated with the rise/fall-time of the exchange J(t). This is the 

switching time τsw. When the relevant two-spin Hamiltonian takes the form of an ideal 

(isotropic) exchange, the total spin is conserved while switching. 

However, to avoid jumps to higher orbital states during gate operation, the exchange 

coupling must be switched adiabatically. More precisely,  

                                           τsw 1/ω0 ≈ 10
−12

 s,         …                                  (III-26)  
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where ω0 ≈ 1meV is the energy gap to the next orbital state. We stress that this time 

scale is valid only for the ideal case of a purely isotropic exchange interaction. When 

the exchange interaction is anisotropic, different spin states may mix and the relevant 

time scale for adiabatic switching may be significantly longer. For scalability, and 

application of quantum error correction procedures in any quantum computing 

proposal, it is important to turn off inter-qubit interactions in the idle state. In the Loss-

DiVincenzo proposal, this is achieved with exponential accuracy since the overlap of 

neighbouring electron wave functions is exponentially suppressed with increasing 

separation. 

 

III-7-2- Quantum computing and the quantum Hall effect 

Based on observed long lifetimes for nuclear spin states, Privman et al. [31] have 

proposed a quantum computer composed of nuclear spins embedded in a two 

dimensional electron gas (2DEG) in the quantum-Hall regime. The qubits of their 

proposal are encoded in the states of nuclear spins, which must be sufficiently 

separated to avoid dipolar coupling, but close enough (10nm) to allow significant 

interaction via the electron gas. Initialization of the qubits is achieved by placing spin-

polarized conducting strips with a current of electrons above the nuclear spin qubits. 

The contact hyperfine interaction between electron and nuclear spins causes a 

polarization transfer from the electrons in the strips to the nuclear spins, preferentially 

orienting the nuclear spins along the electron spin polarization direction. Readout is 

performed in a complementary manner, with a transfer of polarization from the nuclear 

spins to electrons in the conducting strips. Single-qubit operations are performed via 

standard NMR pulses, which would require strong magnetic field gradients or many 

different nuclear spin species to bring single specific nuclear spins into resonance, 

while leaving the other qubits unchanged. A pairwise interaction between the nuclear 

spin qubits is necessary for the implementation of two-qubit gates. This interaction is 

generated by a superexchange, mediated by electrons in the quantum Hall fluid that 

surrounds the nuclear spins (Figure III-14-c). The electron gas that couples the 

nuclear spins should be in the quantum Hall regime to avoid Friedel oscillations in the 

electron density. To perform computations, it is necessary to switch the interaction on 
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and off. In the original work of Privman et al, it was not clear how best to pulse the 

inter-qubit interaction. Topics such as switching error and perhaps the most important 

of all, decoherence, are not addressed in the original work of Privman et al. However, 

subsequent studies of the decoherence of nuclear spins in the integer quantum Hall 

regime have led to the prediction that the decoherence time for these qubits could be as 

long as D   10
−1

 s. 

 

 

 

 

 

 

 

 

 

 

Figure III-14: Schematic diagram illustrating the Fermi contact hyperfine interaction. 

[31] 

 

III-8- Obstacles to quantum dot quantum computing 

Several major obstacles to quantum dot quantum computation were identified and 

addressed in the original work of Loss and DiVincenzo, and later elaborated upon. 

These obstacles include entanglement, gating error, and perhaps most importantly, 

coherence. 

III-8-1- Flying qubits and entanglement generation 

In addition to the five DiVincenzo criteria for quantum computation, there are two 

“desiderata”, which are important for performing quantum communication tasks. 

These desiderata are summarized in the following statements: 

1- The ability to inter-convert stationary and flying qubits. 

2- The ability to faithfully transmit flying qubits between distant locations. 
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The whimsical term “flying qubits” refers to qubits that can be conveniently moved 

from place to place. The most obvious choice for a flying qubit is provided by the 

polarization states of photons. In the context of quantum-dot quantum computing, this 

has led to a number of proposals for the conversion of quantum information or 

entanglement from spin to light, and vice versa. More recent work has suggested that 

“free electron quantum computation” may be possible in principle, in which mobile 

electrons travelling between dots could replace photons as the flying qubit medium of 

choice. 

Deeply connected to the implementation of flying qubits is the creation of nonlocal 

entanglement. The race to create and measure entangled particle pairs has led to a 

virtual industry of so-called “entangler” proposals for the spin and orbital degrees of 

freedom. These proposals have the very ambitious goal of generating and spatially 

separating a many-particle quantum superposition that can not be factorized into 

single-particle states. The canonical example of such a state for the spin degree of 

freedom is the singlet formed from two spin 1/2 particles:  2/ . The 

various efforts related to spin entanglement include proposals to extract and separate 

spin-singlet pairs from a superconductor through two quantum dots or Luttinger-liquid 

leads and proposals that generate entanglement near a magnetic impurity, through a 

single dot, from biexcitons in double quantum dots, through a triple dot, and from 

Coulomb scattering in a two-dimensional electron gas. Entanglement generation and 

measurement remains a lofty goal for those working on solid-state quantum 

computing, theorists and experimentalists alike. Recent experiments that have 

measured the concurrence (an entanglement measure) for electrons in the ground state 

of a two-electron quantum dot point to a promising future for entanglement-related 

phenomena in the solid state. 

 

III-8-2- Gating error 

Hu and Das Sarma [48] have evaluated the probability for double-occupancy of one of 

the dots in the Loss-DiVincenzo proposal using Hartree-Fock and molecular orbital 

techniques. They suggest that it may be difficult to achieve both a significant exchange 

coupling and low double-occupancy probability. Schliemann et al.[31] and more 
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recently Requist et al. [31] have investigated the probability for double-occupancy 

gating errors in a pair of coupled quantum dots during swap gate operation. Through 

numerical and analytical study they have found that the Loss-DiVincenzo proposal is 

very robust against double-occupancy errors when operated in the adiabatic regime. 

Barrett and Barnes [31] have subsequently shown that orbital dephasing can result in a 

significant error rate (10
−2

–10
−3

 errors per gate operation). This is comparable to 

current estimates for the maximum error rate allowable for quantum error correction to 

be effective, but further studies on the nature of the spin-orbit interaction have 

suggested that the spin-orbit coupling can be minimized with careful pulsing of the 

exchange during gate operations. When the potential barrier between quantum dots is 

pulsed low, the overlap between nearest neighbour dots is appreciable, while that 

between next-nearest and next-next-nearest neighbours is exponentially suppressed 

with distance. In spite of the smallness of these interactions, Mizel and Lidar have 

recently suggested that three- and four-spin interactions in a realistic quantum 

computing proposal may lead to substantial gating errors. These problems are, 

however, specific to a particular architecture, and it is possible that they could be 

corrected or exploited by adjusting the device design. 

 

III-9- Future Goals 

III-9-1- Detection of single-electron spin decoherence 

After the recent successful measurements of the T1-lifetime of single electron spins in 

quantum dots, measurements of the decoherence time T2 are due. To achieve such an 

experiment, an initial coherent evolution of the electron spin must be produced. This 

can be done, e.g., with electron spin resonance (ESR) or by inducing spin precession in 

a transverse magnetic field. The decay of the spin coherence can then be measured. 

Several proposals of this type have been made. Engel and Loss [30] have proposed a 

measurement of the sequential tunnelling current through a dot containing a single 

electron spin in the presence of ESR excitation. Sequential tunnelling, in general, 

describes a regime where charge transport only occurs via a sequence of first-order 

tunnelling processes. In the regime when sequential tunnelling is only possible via an 

intermediate singlet state on the dot, the stationary current I is a Lorentzian as a 
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function of the ESR detuning δESR = ωESR − geμBB, where ωESR is the ESR frequency. 

The inverse of the linewidth of I(δESR) provides a lower bound for the intrinsic T2 time 

of a single electron spin. Further, the coherent Rabi oscillations due to ESR pulses can 

be observed in the time-averaged current I(tp) as a function of the ESR pulse length tp. 

Gywat et al.[31] have theoretically studied the optical detection of magnetic resonance 

(ODMR) to measure the T2-time of a single electron spin in a quantum dot. In this 

approach, the dot initially contains a single excess electron that is subject to ESR 

excitation. Unlike a tunnelling experiment, optical transitions are subject to selection 

rules and are not restricted to the Coulomb blockade regime, e.g., if the excess electron 

is present due to n-doping and is not electrically injected. 

 

III-9-2- Single-qubit rotations 

A further important step towards the goal of quantum computation is the 

implementation of a single-qubit gate. To achieve this for the Loss-DiVincenzo 

proposal, several possible strategies have been developed. The simplest way to rotate a 

spin is by applying a pulsed magnetic field. In an array of quantum dots, such fields 

could be applied to single spins. Further, in the presence of an rf magnetic field 

applied to an ensemble of electron spins, the tenability and precise control of the 

individual Zeeman splittings is sufficient to produce single spin rotations. When the 

ESR resonance condition is matched, the spin rotates with maximum amplitude, 

according to the well-known Rabi formula. Detuning of the Zeeman splitting of an 

individual spin from the ESR resonance slows its precession frequency and the spin 

stops rotating entirely when the detuning is larger than the ESR linewidth. Control of 

the Zeeman splitting at the single-spin level is therefore another way to perform 

single-spin rotations. This can be achieved in principle by controlling local magnetic 

fields or local Overhauser fields. For a structure designed to apply ESR excitation to a 

single quantum dot (Figure III-15). Another approach is the individual control of the 

electron g-factor instead of the local magnetic field. Salis et al.[32] have demonstrated 

electrically controlled modulation of the g-factor in an AlGaAs quantum well 

containing a gradient in the Al concentration. Here, the electron wave function was 
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shifted between regions with different Al concentration via applied gate voltages, 

which resulted in the observation of a different electron g-factor. 

Alternative proposals to produce single-spin rotations are related to all-optical Raman 

transitions and stimulated Raman adiabatic passage (STIRAP), a method based on 

two-photon Raman transitions which has already been applied to atoms and molecules 

to transfer a precisely controlled population between two quantum states. While 

Troiani et al.[32] have also considered the realization of conditional and unconditional 

quantum gates using an additional adjacent quantum dot, Chen et al.[32]  have 

proposed a STIRAP process with no auxiliary state, but in the presence of a transverse 

magnetic field. In this setup, control of the relative phase and the relative intensity of 

two applied laser pulses enable an arbitrary spin rotation for a given polarization of the 

light and direction of the transverse magnetic field. As an alternative method of 

performing a spin rotation on an excess electron confined to a quantum dot, Calarco et 

al. [31] have proposed to excite lh states via a sequence of a linearly and then a 

circularly polarized laser π-pulse. Given this abundance of proposals for single-qubit 

gates, there is great hope for working experimental realizations in the near future. 

 

 

 

 

 

 

 

 

 

Figure III-15: SEM picture and scheme of a structure to apply a local rf magnetic 

field to a quantum dot. [32] 

 

III-9-3- Two-Qubit Gates 

Swapping of the spin states of two electrons located in closely spaced quantum dots 

seems by now to be a realistic first experimental step towards a two-qubit gate for 
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spins. This can be achieved by controlling the overlap of the two wave functions of the 

electrons and thus the singlet-triplet splitting J. The interdot tunnel splitting and J can 

be determined from a transport experiment in the sequential tunnelling regime. 

Recently, J has been measured for two electrons in a single gated quantum dot by 

detecting inelastic cotunnelling above and below a magnetic field driven singlet-triplet 

transition. In the cotunnelling regime, only second-order tunnelling processes 

contribute to charge transport. Because the dot was elliptical, a two-electron wave 

function similar to that in a double dot was expected. Two different samples yielded    

J ≈ 0.2 meV and J ≈ 0.57 meV at B = 0. The critical magnetic field for the singlet-

triplet transition (where J = 0) has been measured to be B
*
 ≈ 1.3 T. For the interaction 

parameter, υ ≈ 0.5 ± 0.1 has been obtained, indicating that the ground state given by 

21
,,





 (where ± stands for the symmetric/antisymmetric 

orbital wave function) consists of a singlet with a significant admixture of single-

electron orbitals due to the electron-electron interaction. The entanglement of the two 

electron spins in the state above can be quantified by the concurrence C = 2υ/(1 + υ
2
). 

The experimental result C ≈ 0.8 shows that electron-electron interaction reduces the 

degree of spin entanglement from its maximum (C = 1), which is obtained for a singlet 

(having υ = 1). This demonstration strongly encourages that similar results might be 

soon obtained in double dots (which are needed for spatially separating the two 

qubits). 

 

III-10- Conclusions 

A decade after the discovery of the GMR effect the future of spin-electronics in 

nanoscale systems looks bright. This is mainly due to the improved understanding of 

the spin-transport mechanisms and the better control over the device processing. At the 

same time the possibility of conducting spin-transport measurements in systems 

comprising a handful of atoms has opened completely new prospectives. We can 

envision in a near future new devices where the spin and molecular functionalities will 

be combined achieving a broad range of applications, from biological sensors to tools 

for coherent quantum data processing. 
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From the theoretical side the last decade has also witnessed a rapid evolution of 

computational methods for both electronic structure and quantum transport. Several 

numerical implementations are currently available. The most advanced of them are 

based on ab initio schemes and therefore do not depend on parameters obtained from 

experiments. These open the way to a physics “without compromises”, where the 

numerical predictions must reproduce the experimental data, if the systems under 

investigation are the same. For this reason ab initio transport schemes have became 

invaluable tools. Certainly the future of modeling spin transport at the nanoscale is 

dawning. 

The demonstration of working single and two-qubit gates and finally the production of 

quantum dot arrays that enable the application of an entire quantum algorithm 

including error correction are the major problems to tackle towards the goal of a solid-

state implementation of quantum information processing. 
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IV-1- Introduction 

Let us recall that Grover's algorithm is a quantum algorithm for searching an unsorted 

database with N entries in O(N
1/2

) time and using O(logN) storage space. It was 

invented by Lov Grover in 1996 [39]. 

Classically, searching an unsorted database requires a linear search, which is O(N) in 

time. Grover's algorithm, which takes O(N
1/2

) time, is the fastest possible quantum 

algorithm for searching an unsorted database. It provides "only" a quadratic speedup, 

unlike other quantum algorithms, which can provide exponential speedup over their 

classical counterparts. However, even quadratic speedup is considerable when N is 

large.  

Like all quantum computer algorithms, Grover's algorithm is probabilistic, in the sense 

that it gives the correct answer with high probability. The probability of failure can be 

decreased by repeating the algorithm.  

 

IV-2-1- The way to the quantum computation 

Let us now have a closer look at the way a quantum computer works. We will do so by 

comparing the concepts of classical computing with the basics of quantum computing. 

In fact, many classical concepts have very similar quantum counterparts, like bits 

become qubits and still the logic is often best explained within a circuit model.  

 

IV-2-2- Qubits and quantum parallelism 

The elementary information carriers in a quantum computer are the qubits – quantum 

bits. In contrast to classical bits which take on either the value zero or one, qubits can 

be in every superposition of the state vectors 0 and 1 . This means that the vector 

 describing the (pure) state of the qubit can be any linear combination 

10    of the vectors 0 and 1  with complex coefficients α and β. In the 

same way a system of many qubits can be in a superposition of all classically possible 

states                        1,...,1,1...0,...,0,10,...,0,0       …                                    (IV-1) 

The basis 1,...,1,1,...,0,...,0,1,0,...,0,0  that corresponds to the binary words of length n 

in a quantum system of n qubits is called the computational basis. Using the 

http://www.quantiki.org/wiki/index.php?title=Quantum_algorithm&action=edit
http://en.wikipedia.org/wiki/sorting
http://en.wikipedia.org/wiki/database
http://www.quantiki.org/wiki/index.php?title=Lov_K._Grover&action=edit
http://www.quantiki.org/wiki/index.php?title=1996&action=edit
http://www.quantiki.org/wiki/index.php?title=Linear_search&action=edit
http://www.quantiki.org/wiki/index.php?title=Probability&action=edit
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superposition of Equation (IV-1) as an input for an algorithm means somehow to run 

the computation on all classically possible input states at the same time. This 

possibility is called quantum parallelism and it is certainly one of the reasons for the 

computational power of a quantum computer. The mathematical structure behind the 

composition of quantum systems is the one of the tensor product. Hence, vectors like 

0,...,0,0 should be understood as
n

 00...0 . This implies that the dimension 

of the space characterizing the system grows exponentially with the number of qubits.  

A Physically, qubits correspond to effective two-level systems like the ground state 

and excited state of an atom, the polarization degree of freedom of up-and down 

orientation of a spin 1/2 particle. Such a physical system can be in any pure state that 

can be represented by a normalized vector of the above form. A pure state of a 

composite quantum system that is not a product with respect to all constituents is 

called an entangled pure state. 

 

IV-2-3- Readout and probabilistic nature of quantum computers 

An important difference between classical and quantum computers lies in the readout 

process. In the classical case there is not much to say: the output is a bit-string which is 

obtained in a deterministic manner, i.e., repeating the computation will lead to the 

same output again. However, due to the probabilistic nature of quantum mechanics, 

this is different for a quantum computer. If the output of the computation is for 

instance the state vector  , α and β cannot be determined by a single measurement 

on a single specimen. In fact, |α|
2
 and |β|

2
 are the probabilities for the system to be 

found in 0 and 1 respectively. Hence, the absolute values of these coefficients can 

be determined by repeating the computation, measuring in the basis 0 , 1 and then 

counting the relative frequencies. The actual outcome of every single measurement is 

thereby completely undetermined. In the same manner, the state of a quantum system 

consisting of n qubits can be measured in the computational basis, which means that 

the outcome corresponding to some binary word occurs with the probability given by 

the square of the absolute value of the respective coefficient. So in effect, the 

probabilistic nature of the readout process on the one hand and the possibility of 
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exploiting quantum parallelism on the other hand are competing aspects when it comes 

to comparing the computational power of quantum and classical computers. 

 

IV-3- The Quantum Circuit Model 

In the quantum circuit model, we have logical qubits carried along „wires‟, and 

quantum gates that act on the qubits. A quantum gate acting on n qubits has the input 

qubits carried to it by n wires, and n other wires carry the output qubits away from the 

gate. A quantum circuit is often illustrated schematically by a circuit diagram as 

shown in Figure IV-1. The wires are shown as horizontal lines, and we imagine the 

qubits propagating along the wires from left to right in time. The gates are shown as 

rectangular blocks. For convenience, we will restrict attention to unitary quantum 

gates (which are also reversible). Recall that non-unitary (non-reversible) quantum 

operations can be simulated by unitary (reversible) quantum gates if we allow the 

possibility of adding an ancilla and of discarding some output qubits. A circuit 

diagram describing a superoperator being implemented using a unitary operator is 

illustrated in Figure IV-2. 

 

 

 

 

 

 

 

Figure IV-1: A quantum circuit. [33] 

 

In the example of Figure IV-1, the 4-qubit state 0000 i enters the 

circuit at the left. These qubits are processed by the gates U1, U2, U3, and U4. At the 

output of the circuit we have the collective (possibly entangled) 4-qubit state f . A 

measurement is then made of the resulting state. The measurement will often be a 

simple qubit-by-qubit measurement in the computational basis, but in some cases may 

be a more general measurement of the joint state. A measurement of a single qubit in 
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the computational basis is denoted on a circuit diagram by a small triangle, as shown 

in FigureIV-1. 

 

 

 

 

 

 

 

 

Figure IV-2: A general (possibly irreversible) quantum operation or superoperator can 

be realized using a unitary operation by adding an ancilla and tracing out part of the 

output. [33] 

 

The triangle symbol will be modified for cases in which there is a need to indicate 

different types of measurements. Recall that the measurement postulate stated that a 

measurement outputs a classical label „i‟ indicating the outcome of the measurement 

and a quantum state
i . Thus, we could in general draw our measurement symbol 

with a „quantum‟ wire carrying the quantum state resulting from the measurement, 

together with a classical wire carrying the classical label, as depicted in Figure IV-3. 

 

 

 

 

 

Figure IV-3: The measurement of the quantum state 10 10   results in a quantum 

output b with probability |αb|
2
 (b   {0, 1}) together with a classical label „b‟ 

indicating which outcome was obtained. [33] 
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Quite often, the quantum outcome is discarded or ignored, and we are only interested 

in the classical information telling us which outcome occurred. In such cases, we will 

not draw the quantum wire coming out of the measurement symbol. We will usually 

omit the classical wire from circuit diagrams as well. 

 

IV-3-1- Quantum Gates 

IV-3-1-1- Qubit Gates 

We said in the second chapter that any unitary operator acting on a 2-dimensional 

quantum system (a qubit) is called a „1-qubit quantum gate‟. We gave the “quantum 

NOT gate” (sometimes called the Pauli X gate) as an example. Every 1-qubit pure state 

is represented as a point on the surface of the Bloch sphere, or equivalently as a unit 

vector whose origin is fixed at the centre of the Bloch sphere. A 1-qubit quantum gate 

U transforms a quantum state   into another quantum state U  . In terms of the 

Bloch sphere (see chapter II), the action of U on  can be thought of as a rotation of 

the Bloch vector for   to the Bloch vector for U  . For example, the not gate takes 

the state 0 to the state 1 (and takes 1 to 0 ). In terms of the Bloch sphere, this action 

can be visualized as a rotation through an angle π about the x axis, as illustrated in 

FigureIV-4. 

 

 

 

 

 

 

 

 

Figure IV-4: The NOT gate rotating the state 0 to the state 1 . [34] 

 

We saw in chapter II how to compute the exponential (and other functions) of 

operators. If we exponentiate the Pauli matrices, we get unitary operators 
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corresponding to very important classes of 1-qubit gates. These are the rotation gates, 

which correspond to rotations about the x-,y-, and z- axes of the Bloch sphere. They 

are defined in terms of the Pauli gates, and so for convenience, we remind you now of 

the definitions of the Pauli gates: 

               









10

01
I             










01

10
X        







 


0

0

i

i
Y         












10

01
Z    …    (IV-2) 

The rotation gates are defined as follows: 
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
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





        …                                               (IV-3) 

It is easy to check that the Pauli matrices X, Y , and Z satisfy the conditions X
2 

= I, Y 
2 
= 

I, and Z
2
 = I, and so we can write the rotation gates as: 
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Knowing the matrices for I,X, Y , and Z in the computational basis, we can now write 

the rotation gates as matrices in the computational basis: 
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                                                      
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Consider an arbitrary 1-qubit state, written in terms of its Bloch vector angles ζ and η : 
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                                               1
2

sin0
2

cos 















  ie        …                               (IV-6) 

In the computational basis, this can be written as the column vector 
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The effect of applying Rz(θ) on this state can be seen by performing a matrix 

multiplication: 
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Since a global phase is insignificant, we have the state 

                                           1
2

sin0
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cos )(




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


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



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   ie          …                             (IV-9) 

We see that effect of Rz(θ) has been to change the angle η to η + θ, which is a rotation 

of θ about the z-axis of the Bloch sphere. To see that Rx(θ) and Ry(θ) implement 

rotations about the x- and y-axes of the Bloch sphere is trickier, because such rotations 

involve changes to both angles ζ and η . 

It will be useful to show how to decompose any given 1-qubit gate into a sequence of 

rotations about the main axes of the Bloch sphere. The following theorem tells us that 

we can decompose any 1-qubit gate into a sequence of two rotations about the z-axis 

and one rotation about the y-axis, along with a suitable phase factor. 

Theorem IV-1: [34] 

Suppose U is a 1-qubit unitary gate. Then there exist real numbers α, β, γ, and δ such 

that 
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                                          U = e
iα

Rz(β)Ry(γ)Rz(δ)       …                                       (IV-10) 

The proof of this follows from the fact that U is unitary, and the definition of the 

rotation matrices. There is nothing special about the y- and z-axes of the Bloch sphere. 

We can also give decompositions of 1-qubit gates in terms of rotations about any other 

two non-parallel axes of the Bloch sphere. 

Theorem IV-2 : [34] 

Suppose U is a 1-qubit unitary gate. Let l and m be any two non-parallel axes of the 

Bloch sphere. Then there exist real numbers α, β, γ, and δ such that 

                                           U = e
iα

Rl(β)Rm(γ)Rl(δ)        …                                     (IV-11) 

 

As a result any 1-qubit gate U can be written in the form 

                                           U = e
iα

AXBXC, …                                                       (IV-12) 

where A,B,C are unitary operators satisfying ABC = I. (Recall that the Pauli gate X is 

the NOT gate). 

 

IV-3-1-2- Controlled-U Gates 

A controlled-not (CNOT) gate is a 2-qubit quantum gate that conditionally applies the 

not gate on the second (target) qubit when the first (control qubit) is in state 1 . 

Remember that such a gate acts on quantum states in quantum superposition. 

Given any 1-qubit gate U, we can similarly define a controlled-U gate, denotedc-U, 

which will be a 2-qubit gate corresponding to the following operation: 

                                          




UUc

Uc

11

00




       …                                          (IV-13) 

The symbol commonly used for the c-U gate in a quantum circuit diagram is shown in 

Figure IV-5. 

 

 

 

 

Figure IV-5: The c-U gate. [34] 
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The construction of a controlled-U for any 1-qubit gate U can be generalized to allow 

the implementation of a controlled version of any quantum circuit implementing a 

unitary operation U. Suppose we are given a circuit CU implementing a unitary U, and 

we wish to implement a circuit for the controlled-U operation. The basic technique is 

to replace every gate G in CU by a controlled gate c-G, as shown in Figure V-6. 

 

 

 

 

 

 

 

Figure IV-6: Given a circuit CU implementing a unitary U. [34] 

We can assume without loss of generality that CU consists only of 1-qubit gates and 

CNOT gates. So the only thing that remains is to construct a controlled version of the 

CNOT gate. By the way a controlled-cnot gate is called a Toffoli gate. The Toffoli 

gate can be implemented by a circuit containing cnot gates and some 1-qubit gates. So 

we can use this replacement for each of the Toffoli gates generated in our construction 

of the controlled-U circuit. This completes the construction of a circuit for 

implementing the controlled-U operation. 

 

IV-3-2- Universal Sets of Quantum Gates:  

The gates we have seen so far have acted on either a single qubit, or on two qubits. An 

interesting quantum algorithm would, in general, be some complicated unitary 

operator acting non-trivially on n-qubits. In classical computing, we implement 

complicated operations as a sequence of much simpler operations. In practice, we want 

to be able to select these simple operations from some set of elementary gates. In 

quantum computing, we do the same thing. The goal is to choose some finite set of 

gates so that, by constructing a circuit using only gates from that set, we can 

implement non-trivial and interesting quantum computations. 
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When we use a circuit of quantum gates to implement some desired unitary operation, 

in practice, it suffices to have an implementation that approximates the desired unitary 

to some specified level of accuracy. We need to make precise the notion of the quality 

of an approximation of a unitary transformation. Suppose we approximate a desired 

unitary transformation U by some other unitary transformation V . The error in the 

approximation is defined to be 

                                     


VUVUE  max),(         …                                      (IV-14) 

When we say that an operator U can be „approximated to arbitrary accuracy‟, we mean 

that if we are given any error tolerance ε > 0, we can implement some unitary V such 

that E(U, V ) < ε. Having 

                                   E(U2U1, V2V1) ≤ E(U2, V2) + E(U1, V1)     …                      (IV-15) 

It follows that 

      E(UnUn−1 . . . U1, VnVn−1 . . . V1) ≤ E(Un, Vn)+E(Un−1, Vn−1)+· · ·+E(U1, V1)…(IV-16) 

 

 

Definition IV-1:  

A set of gates is said to be universal if for any integer n ≥ 1, any n-qubit unitary 

operator can be approximated to arbitrary accuracy by a quantum circuit using only 

gates from that set. 

Finding convenient universal sets of gates is of great practical importance as well as of 

theoretical interest. Since a universal set of gates must be able to implement, for 

example, the CNOT, it will have to contain at least one non-trivial gate on two or more 

qubits. 

Definition IV-2:  

A 2-qubit gate is said to be an entangling gate if for some input product state  the 

output of the gate is not a product state (i.e. the output qubits are entangled). 

The following universality result is a useful starting point. 

Theorem IV-3:[35] 

A set composed of any 2-qubit entangling gate, together with all 1-qubit gates, is 

universal. 
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Theorem V-3 implies, for example, that the CNOT gate together with all 1-qubit gates 

is universal. The theorem gives sets that are universal in a stronger sense required by 

Definition IV-1. With an entangling 2-qubit gate and all 1-qubit gates, we can 

implement any n-qubit unitary exactly. A shortcoming of Theorem IV-3 is that the 

universal sets of gates it provides are infinite. It is useful to find a finite set of gates 

that is universal. A natural starting point in this direction is to look for a finite set of 1-

qubit gates that can be used to approximate any 1-qubit gate to arbitrary accuracy. 

Definition IV-3:  

A set of gates is said to be universal for 1-qubit gates if any 1-qubit unitary gate can be 

approximated to arbitrary accuracy by a quantum circuit using only gates from that 

set. 

Theorem IV-2 states that for any two non-parallel axes l and m of the Bloch sphere, 

the set consisting of the rotation gates Rl(β) and Rm(γ) for all β, γ   [0, 2π] is universal 

for 1-qubit gates. 

Theorem IV-4:[35] 

If a set of two 1-qubit gates (rotations) G = {Rl(β),Rm(γ)} satisfies the conditions:  

1-  l and m are non-parallel axes of the Bloch sphere 

2- β, γ   [0, 2π] are real numbers such that β/π and γ/π are not rational then G is 

universal for 1-qubit gates. 

As a concrete example, we give a simple set satisfying the conditions of Theorem IV-

4. In this direction is the Hadamard gate, H, and the 
8


-phase gate, T, where 
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TandH                …                (IV-17) 

The set G = {HTHT,THTH} satisfies the conditions of Theorem IV-4, this gives: 

 The set {H, T} is universal for 1-qubit gates. We now have the following universality 

result. 

Theorem IV-5:[35] 

The set {CNOT,H, T} is a universal set of gates. 
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IV-3-3- Efficiency of Approximating Unitary Transformations 

In the previous section, we have stated that an arbitrary unitary transformation can be 

simulated using gates from a fixed universal set, such as {H, CNOT, T}(Theorem IV-

5). We have said nothing about how efficiently this can be done however. If we wish to 

implement a given unitary transformation U (corresponding to some computation), we 

would be interested in being able to do this using a polynomial number of gates from 

our universal set. Here, „polynomial‟ is taken to mean „polynomial in 


1
and in the 

number of qubits n‟, where is the desired quality of the estimate of U. 

In fact, most unitary transformations cannot be efficiently approximated using gates 

from our universal set; this can be shown by counting arguments (since there are many 

more transformations than efficient circuits). 

The difficulty in efficiently implementing some unitary transformations does not lie in 

the complexity of simulating arbitrary 1-qubit gates from a finite set of 1-qubit gates, 

since the decomposition described before can be done in time polynomial in 



1
provided n-bit approximations of all the coefficients of the gates can be computed in 

time polynomial in n. A result known as the Solovay–Kitaev theorem promises that we 

can do much better and find a set G of 1-qubit gates such that any arbitrary 1-qubit 

gate can be approximated to arbitrary accuracy using a sequence of a poly-logarithmic 

number of gates from G. In other words, if we want to approximate a given unitary 

with error less than ε, we can do so using a number of gates that is polynomial in 

log(1/ε ). 

It is worth discussing some of the consequences of the Solovay–Kitaev theorem. 

Suppose we are given a quantum circuit consisting of several CNOT gates, and m 1-

qubit gates, and we wish to approximate this circuit using only gates from the 

universal set {CNOT}   G. Suppose we approximate each 1-qubit gate in the circuit 

with error at most 
m


. Then the overall error in the approximation of the circuit is 

bounded by . So, if we want to approximate the circuit using only gates from our 

universal set {CNOT}   G, and if we want the total error in the approximation to be at 
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most , we should aim to approximate each 1-qubit gate in the circuit with error at
m


. 

We are now faced with the following question of efficiency: „how many gates from G 

are required to approximate each 1-qubit gate with error at most 
m


?‟ A special case of 

the Solovay–Kitaev theorem answers this question. 

Theorem IV-6 [35] 

(Solovay–Kitaev) If G is a finite set of 1-qubit gates satisfying the conditions of 

Theorem IV-4 and also 

3- for any gate g   G, its inverse g
−1

 can be implemented exactly by a finite sequence 

of gates in G, then any 1-qubit gate can be approximated with error at most  using 












1
log cO  gates from G, where c is a positive constant. 

Thus, according to the Solovay–Kitaev theorem, any 1-qubit gate can be approximated 

with error at most
m


 using 











1
log cO gates from a finite set G that is universal for 1-

qubit gates, and that contains its own inverses (or whose inverses can be constructed 

exactly from a finite sequence of gates from G). It is worth noting that if n-bit 

approximations of the coefficients of the gates in G can be computed in time 

polynomial in n, then the efficient decompositions can be found in time polynomial 

in 










1
log .  

Notice that the set {H, T} satisfies these conditions. For a circuit having m 

1-qubit gates, the approximation of these gates requires at most 

                                          )log( 










m
mO c        …                                                    (IV-18) 

gates from a universal set. This is a poly-logarithmic increase over the size of the 

original circuit. 
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IV-3-4- Implementing Measurements with Quantum Circuits 

Given an orthonormal basis
j , suppose we have a state  , which we write in this 

basis: 

                                           
j

jj          …                                               (IV-19) 

Recall that a Von Neumann measurement of   with respect to the basis  j is 

described by the orthogonal projectors jj  , and will output the result „j‟ with 

probability 

                                          jjTr 
2

j         …                                  (IV-20) 

Given a device that will measure individual qubits in the computational basis, we can 

use a quantum circuit to implement Von Neumann measurements of a multi-qubit 

register with respect to any orthonormal basis j . This can be done as follows. First, 

we construct a quantum circuit that implements the unitary transformation jU j  , 

where j is the corresponding n-qubit computational basis state). The operator U 

performs a basis change from the  j basis to the computational basis. Given a 

general state
j

jj  , we use the circuit to perform the basis change U, and then 

make a measurement of the register in the computational basis. Finally, we perform 

the inverse basis change U
−1

 (by running the circuit for U backwards, replacing each 

gate by its inverse). This network is shown in Figure IV-7. An alternative approach is 

illustrated in Figure IV-8. In the alternative approach, we do not directly measure the 

state (with respect to the computational basis) after the basis change, but instead we 

“copy” the values onto an ancillary register, which we then measure in the 

computational basis. 

 

Figure IV-7: Circuit implementing a Von Neumann measurement with respect to the 

basis j . [34] 
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Figure IV-8: Another circuit implementing the Von Neumann measurement. [34] 

 

It will be very important for quantum computing to be able to implement general 

projective measurements, and not complete Von Neumann measurements. Consider a 

projective measurement with respect to the decomposition 

                                              
i

iPI             …                                                  (IV-21) 

where Pi has rank ri. In other words 

                                        



r

j

jijiiP
1

,,             …                                            (IV-22) 

where the the states  ji, are an orthonormal basis for the Hilbert space of dimension 

 i irN . 

Let UP be a circuit that maps ijiji ,, 0   . One way (but not the only way) to 

implement UP is to perform a basis change jiU ji ,: ,  , „copy‟ j to the ancilla 

register, and then apply U
−1

. 

One can implement UP with a sequence of CNOT gates, as illustrated in Figure IV-9. 

Thus after the UP circuit, we have the state  

 
  

  
 


x xparity xparity

xxx xxxparityx
0 1

1100 1010 
… (IV-23) 

 

 

 

 

Figure IV-9: A circuit computing the parity of three qubits. [34] 
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Thus measuring the ancilla qubit will leave the first register in the state 
0 with 

probability |α0|
2
 and in the state 

1 with probability |α1|
2
, as required. Therefore, this 

circuit will implement a parity measurement on an arbitrary 3- qubit state, as depicted 

in Figure IV-10. 

 

 

 

 

 

 

Figure IV-10: A circuit implementing a parity measurement. [34] 

It is worth emphasizing what differentiates this projective parity measurement from a 

Von Neumann measurement followed by classical post-processing to compute the 

parity. The projective measurement measures only the parity of the strings in the 

quantum state, and no other information, leaving one of the superposition states 

0 or
1 . A complete Von Neumann measurement would have extracted more 

information than needed, and we would have been left with a random basis state x of 

a specific parity instead of a superposition of all strings with the same parity. 

 

IV-4- The programation process of a quantum computer 

The good thing about the classical computer is that it is programmable. It is a single 

device capable of performing different operations depending on the program it is 

given: word processing, algebraic transformations, displaying movies, etc.. To put it in 

more abstract words a classical computer is a universal gate array: we can program 

every possible function with n input and n output bits by specifying a program of 

length n2
n
. That is, a fixed circuit with n(1 + 2

n
) input bits can be used in order to 

compute any function on the first n bits in the register. Is the same true for quantum 

computers? Or will these devices typically be made-to-measure with respect to a single 

task? 
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Nielsen and Chuang [34] showed that quantum computers cannot be universal gate 

arrays. Even if the program is itself given in form of a quantum state it would require a 

program register of infinite length in order to perform an arbitrary (unitary) operation 

on a finite number of qubits – universality was shown to be only possible in a 

probabilistic manner. In this sense, quantum computers will not be the kind of all 

purpose devices which classical computers are. In practice, however, any finite set of 

quantum programs can run on a quantum computer with a finite program register. This 

issue applies, however, to the programming of a quantum computer with a fixed 

hardware, which is, needless to say, still in the remote future as a physical device. 

 

IV-5- Elementary quantum algorithms 

In the same scientific paper in which David Deutsch [44] introduced the notion of the 

universal quantum computer, he also presented the first quantum algorithm. The 

problem that this algorithm addresses, later referred to as Deutsch‟s problem, is a very 

simple one. Yet the Deutsch algorithm already exemplifies the advantages of a 

quantum computer through skilfully exploiting quantum parallelism. Like the Deutsch 

algorithm, all other elementary quantum algorithms amount to deciding which black 

box out of finitely many alternatives one has at hand. Such a black box is often also 

referred to as oracle. An input may be given to the oracle, one may read out or use the 

outcome in later steps of the quantum algorithm, and the objective is to find out the 

functioning of the black box. It is assumed that this oracle operation can be 

implemented with some sequence of quantum logic gates. The complexity of the 

quantum algorithm is then quantified in terms of the number of queries to the oracle. 

 

IV-5-1- Probabilistic Versus Quantum Algorithms 

We begin by considering a simple probabilistic computation. Figure IV-11 illustrates 

the first two steps of such a computation on a register that can be in one of the four 

states, labelled by the integers 0, 1, 2, and 3. Initially the register is in the state 0. After 

the first step of the computation, the register is in the state j with probability p0,j . For 

example, the probability that the computation is in state 2 after the first step is p0,2. In 

the second step of the computation, the register goes from state j to state k with 
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probability qj,k. For example, in the second step the computation proceeds from state 2 

to state 3 with probability q2,3. 

 

 

 

 

 

 

 

 

 

Figure IV-11: A classical probabilistic computation acting on a register that can be in 

one of four states labelled 0, 1, 2, 3. [23] 

 

Suppose we want to find the total probability that the computation ends up in state 3 

after the second step. This is calculated by first determining the probability associated 

with each computation „path‟ that could end up at the state 3, and then by adding the 

probabilities for all such paths. There are four computation paths that can leave the 

computation in state 3 after the first step. The computation can proceed from state 0 to 

state j and then from state j to state 3, for any of the four  3,2,1,0j . The probability 

associated with any one of these paths is obtained by multiplying the probability p0,j of 

the transition from state 0 to state j, with the probability qj,3 of the transition from state 

j to state 3. The total probability of the computation ending up in state 3 is given by 

adding these four possibilities. So we have 

                             prob(final outcome is 3) =
j

jj qp 3,,0          …                          (IV-24) 

Another way of looking at this computation is to suppose the register consists of two 

qubits, and let the labels 0, 1, 2, 3 refer to the four basis states 11,10,01,00 , 

respectively. Then view each of the transition probabilities as a squared norm of a 

quantum probability amplitude, so that p0,j = |α0,j |
2
 and qj,k = |βj,k|

2
. This approach is 
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shown in Figure IV-12, which can be viewed as a quantum computation in which the 

state is measured after each step. 

 

Figure IV-12: The classical probabilistic computation viewed in a quantum setting. 

[23] 

 

As before, the total probability of measuring outcome 3 after the second step is 

              prob(final outcome is 3) =
j

|α0,j |
2
|βj,3|

2
 =

j

|α0,jβj,3|
2
    …                 (IV-25) 

which is the same probability as in Equation (IV-24). 

In this example, since we assume that the state is measured after each step, we would 

know the intermediate state j, and thus we would know which computation path 

leading to the final state 3 was taken. The total probability of arriving at the final state 

3 is determined by adding the squared norm of the probability amplitude α0,jβj,3 

associated with each path (i.e. we add the probabilities for the four paths, and not the 

probability amplitudes). 

In a fully quantum algorithm, we would not measure the state immediately after the 

first step. This way the quantum probability amplitudes will have a chance to interfere. 

For example, some negative amplitudes could cancel with some positive amplitudes, 

significantly affecting the final probabilities associated with a given outcome. A 

quantum version of the algorithm above is illustrated in Figure IV-13. 

This time the calculation of the total probability associated with outcome 3 in the 

measurement after the second step is different. Since there is no measurement after the 

first step of the computation, we do not learn the path taken by the computation to the 

final state 3. That is, when we obtain the output 3, we will have no information telling 
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us which of the four paths was taken. In this case, instead of adding the probabilities 

associated with each of these four paths, we must add the probability amplitudes. The 

probability of a measurement after the second step giving the result 3 is obtained by 

taking the squared norm of the total probability amplitude. 

                                prob(final outcome is 3) =

2

3,,0
j

jj       …                       (IV-26) 

 

 

 

 

 

 

 

 

Figure IV-13: A fully quantum computation. [23] 

 

Which is clearly distinct from the classical result; Equation (IV-24) 

Now consider the quantum circuit in Figure IV-14. This circuit does not perform a 

purely quantum computation, because we make a measurement immediately after the 

first Hadamard gate. 

 

 

 

 

Figure IV-14: A quantum circuit exhibiting no quantum interference. [23, 36] 

 

The state 1 immediately after this measurement is 

                                   
1 = 









2

1
1

2

1
0

yprobabilitwith

yprobabilitwith
          …                                (IV-27) 

The state immediately after the second Hadamard gate is then 
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 

 















2

1
10

2

1
2

1
10

2

1

2

yprobabilitwith

yprobabilitwith

       …                        (IV-28) 

In either case, the final measurement will give the result 0 or 1 with equal probability. 

Compare the above with the quantum circuit shown in Figure IV-15. This time there 

is no measurement after the first Hadamard gate, and the application of the second 

Hadamard gate will give rise to interference in the quantum amplitudes. The state 

immediately after the first Hadamard gate is 

                                         1
2

1
0

2

1
1            …                                       (IV-29) 

This state is input directly to the second Hadamard gate, and the state after the second 

Hadamard gate is 

                            

0

1
2

1
0

2

1
1

2

1
0

2

1

1
2

1
0

2

1

2

1
1

2

1
0

2

1

2

1

1
2

1
0

2

1

1
2

1
0

2

1
2




































HH

H

       …           (IV-30) 

The total probability amplitude associated with 1 is 0, meaning that the probability 

for the second measurement giving result „1‟ is now 0. The second Hadamard gate 

acted on the basis states 0 and 1 in superposition, and the amplitudes of state 1 for 

the two paths in this superposition interfered, causing them to cancel out. 

 

 

 

 

 

 

Figure IV-15: A quantum circuit exhibiting interference. [23, 24] 
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IV-5-2- Deutsch algorithm 

The Deutsch algorithm is a very simple example of a quantum algorithm based on the 

Quantum Fouries Transform it illustrates the key ideas of quantum parallelism and 

quantum interference that are used in all useful quantum algorithms. 

The problem solved by the Deutsch algorithm is the following. Suppose we are given a 

reversible circuit for computing an unknown 1-bit function    1,01,0: f . We treat 

this reversible circuit as a „black box‟ or „oracle‟. This means that we can apply the 

circuit to obtain values of f(x) for given inputs x, but we cannot gain any information 

about the inner workings of the circuit to learn about the function f. The problem is to 

determine the value of f(0)  f(1). If we determine that f(0)  f(1) = 0, then we know 

that f(0) = f(1) (although we do not know the value), and we say that f is „constant‟. If 

on the other hand we determine that f(0)  f(1) = 1, then we know that f(0)  f(1), and 

we say the function is „balanced‟. So determining f(0)   f(1) is equivalent to 

determining whether the function f is constant or balanced. 

How many queries to the oracle for f must be made classically to determine f(0) 

 f(1)? Clearly the answer is 2. Suppose we compute f(0) using one (classical) query. 

Then the value of f(1) could be 0, making f(0)  f(1) = 0, or the value of f(1) could be 

1, making f(0)   f(1) = 1. Without making a second query to the oracle to determine 

the value of f(1), we can make no conclusion about the value of f(0)  f(1). The 

Deutsch algorithm is a quantum algorithm capable of determining the value of    f(0) 

 f(1) by making only a single query to a quantum oracle for f. 

The given reversible circuit for f can be made into a quantum circuit, by replacing 

every reversible classical gate in the given circuit with the analogous unitary quantum 

gate. This quantum circuit can be expressed as a unitary operator 

 xfyxyxU f :  

Having created a quantum version of the circuit for f, we can supply quantum bits as 

inputs. We define Uf so that if we set the second input qubit to be in the state 0y , 

then 0x  in the first input qubit will give    000 ff  in the second output bit, 

and 1x  in the first input qubit will give  1f . So we can think of 0x as a 

quantum version of the (classical) input bit 0, and 1x as a quantum version of the 
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input bit 1. Of course, the state of the input qubit can be some superposition of 

0 and 1 . Suppose, still keeping the second input qubit 0y , we set the first input 

qubit to be in the superposition state 

                                                    1
2

1
0

2

1
       …                                         (IV-31) 

Then the two qubit input to Uf is 

                                               

01
2

1
00

2

1

0)1
2

1
0

2

1
(





      …                                   (IV-32) 

 

The output of Uf  will be the state 

)01
2

1
00

2

1
( fU  

01
2

1
00

2

1
ff UU   

   101
2

1
000

2

1
ff   

   101
2

1
00

2

1
ff   

In some sense, Uf has simultaneously computed the value of f on both possible inputs 0 

and 1 in superposition. However, if we now measure the output state in the 

computational basis, we will observe either  00 f (with probability 1/2), or 

 101 f (with probability 1/2 ). After the measurement, the output state will be 

either  0f or  1f respectively, and so any subsequent measurements of the output 

state will yield the same result. So this means that although we have successfully 

computed two values in superposition, only one of those values is accessible through a 

quantum measurement in the computational basis. Fortunately, this is not the end of 

the story. 

Recall that for the Deutsch problem we are ultimately not interested in individual 

values of f(x), but wish to determine the value of f(0)  f(1). The Deutsch algorithm 

illustrates how we can use quantum interference to obtain such global information 
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about the function f, and how this can be done more efficiently than is possible 

classically. The Deutsch algorithm is implemented by the quantum circuit shown in 

Figure IV-16. 

 

 

 

 

 

 

 

 

Figure IV-16: A circuit implementing the Deutsch algorithm. The measured value 

equals f(0)  f(1). [37] 

 

Note that the second input bit has been initialized to the state 
2

10 
. This state can 

easily be created from the state 1 by applying a single Hadamard gate. We do not 

show this gate, however, to emphasize a certain symmetry that is characteristic of 

these algorithms. A convenient way to analyse the behaviour of a quantum algorithm 

is to work through the state at each stage of the circuit. First, the input state is 

                                            


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



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
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10
00          …                                        (IV-33) 

After the first Hadamard gate is applied to the first qubit, the state becomes 
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       …                (IV-34) 

Recalling from Appendix A-3, after applying the Uf gate we have the state 
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     …          (IV-35) 

where the last equality uses the fact that (−1)
f(0)

(−1)
f(1)

 = (−1)
f(0)

 
f(1)

. If f is a constant 

function (i.e. f(0)   f(1) = 0), then we have 
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           …                       (IV-36) 

and so the final Hadamard gate on the first qubit transforms the state to 

                                         
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The squared norm of the basis state 0 in the first qubit is 1. This means that for a 

constant function a measurement of the first qubit is certain to return the value 0 = f(0) 

 f(1). 

If f is a balanced function (i.e. f(0)  f(1) = 1), then we have 
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and so the final Hadamard gate on the first qubit transforms the state to 

                                            
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                  …                          (IV-39) 

In this case the squared norm of the basis state 1 in the first qubit is 1. This means 

that for a balanced function a measurement of the first qubit is certain to return the 

value 1 = f(0)  f(1). So a measurement of the first qubit at the end of the circuit for 

the Deutsch algorithm determines the value f(0)  f(1) and thus whether the function is 

constant or balanced. 

To gain some insight into how the Deutsch algorithm can generalize, it is helpful to 

remember that the operator  xfyxyxU f : in the Deutsch algorithm can be 

viewed as a single-qubit operator  xfU


, whose action on the second qubit is controlled 
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by the state of the first qubit (Figure IV-17). The state












 

2

10
 is an eigenstate of 

 xfU


 with eigenvalue (−1)
f(x)

. By encoding these eigenvalues in the phase factors of 

the control qubit, we are able to determine f(0)   f(1) by determining the relative 

phase factor between 0 and 1 . Distinguishing 


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

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2

10
 and 


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2

10
is done using 

the Hadamard gate. 

 

 

 

 

 

 

Figure IV-17: The circuit for Deutsch‟s algorithm with the  xfUc  drawn instead of 

Uf [37] 

IV-5-3- Deutsch-Jozsa algorithm [44] 

The Deutsch–Jozsa algorithm solves a problem that is a straight forward generalization 

of the problem solved by the Deutsch algorithm. The algorithm has exactly the same 

structure. As with the Deutsch algorithm, we are given a reversible circuit 

implementing an unknown function f, but this time f is a function from n-bit strings to 

a single bit. That is, 

                                           1,01,0: 
n

f       …                                                   (IV-40) 

We are also given the promise that f is either constant (meaning f(x) is the same for all 

x), or f is balanced (meaning f(x) = 0 for exactly half of the input strings x, and f(x) = 1 

for the other half of the inputs). The problem here is to determine whether f is constant, 

or balanced, by making queries to the circuit for f. 

Consider solving this problem by a classical algorithm. Suppose we have used the 

oracle to determine f(x) for exactly half of the possible inputs x (i.e. you have made 

2
n−1 

queries to f), and that all queries have returned f(x) = 0. At this point, we would 

strongly suspect that f is constant. However, it is possible that if we queried f on the 

 



Chapter IV                                                                                                  Quantum computers 

U.H.B.C 118 

remaining 2
n−1 

inputs, we might get f(x) = 1 each time. So it is still possible that f is 

balanced. So in the worst case, using a classical algorithm we cannot decide with 

certainty whether f is constant or balanced using any less than 2
n−1

+1 queries. The 

property of being constant or balanced is a global property of f. As for the Deutsch 

problem, a quantum algorithm can take advantage of quantum superposition and 

interference to determine this global property of f. The Deutsch–Jozsa algorithm will 

determine whether f is constant, or balanced, making only one query to a quantum 

version of the reversible circuit for f. 

Analogous to what we did for the Deutsch algorithm, we will define the quantum 

operation 

                                     xfyXyXU f :       …                                     (IV-41) 

This time we write x in boldface, because it refers to an n-bit string. As before, we 

think of Uf as a 1-qubit operator  xfU


, this time controlled by the register of qubits in 

the state x . We can see that 
2

10 
 is an eigenstate of  xfU



with eigenvalue (−1)
f(x)

. 

The circuit for the Deutsch–Jozsa algorithm is shown in Figure IV-18. Notice the 

similarity between the circuit for the Deutsch algorithm, and the circuit for the 

Deutsch–Jozsa algorithm. In place of a simple 1-qubit Hadamard gate, we now have 

tensor products of n 1-qubit Hadamard gates (acting in parallel). 

This is denoted H n.
 , We use

n
0 , or 0 to denote the state that is the tensor product 

of n qubits, each in the state 0 . 

 

 

 

 

 

 

 

 

Figure IV-18: A circuit for the Deutsch–Jozsa algorithm. [37] 
 



Chapter IV                                                                                                  Quantum computers 

U.H.B.C 119 

As we did for the Deutsch algorithm, we follow the state through the circuit. Initially 

the state is 

                                             












 




2

10
00

n
        …                                     (IV-42) 

 

Consider the action of an n-qubit Hadamard transformation on the state
n

0 : 

                            10...1010
2

1
0 












n

nnH        …         (IV-43) 

By expanding out the tensor product, this can be rewritten as 

                                       
 



 
n

x
n

nn xH
1,02

1
0         …                                      (IV-44) 

This is a very common and useful way of writing this state; the n-qubit Hadamard gate 

acting on the n-qubit state of all zeros gives a superposition of all nqubit basis states, 

all with the same amplitude 
n2

1
(called an „equally weighted superposition‟). So the 

state immediately after the first H n
 in the Deutsch– Jozsa algorithm is  

                                     
 















 


n
x

n
x

1,0

1
2

10

2

1
         …                                (IV-45) 

Notice that the query register is now in an equally weighted superposition of all the 

possible n-bit input strings. Now consider the state immediately after the Uf 

(equivalently the c-  xfU


) gate. The state is 

                                    
 

)
2

10
(

2

1

1,0

2 














 


n
x

f
n

xU   

                                       

 















 


n
x

xf

n
x

1,0

2
2

10
1

2

1
            …                  (IV-46) 

where we have associated the phase shift of (−1)
f(x)

 with the first qubit. 

To facilitate our analysis of the state after the interference is completed by the second 

Hadamard gate, consider the action of the n-qubit Hadamard gate on an n-qubit basis 

state x . 
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It is easy to verify that the effect of the 1-qubit Hadamard gate on a 1-qubit basis state 

x can be written as 

                                       

  

 
 







1,0

1
2

1

110
2

1

z

xz

x

z

xH

          …                                   (IV-47) 

Then we can see that the action of the Hadamard transformation on an n-qubit basis 

state 
nxxxx ...21  is given by 

                   

 

        

 
 














n
n

nn

n

zzz

n

zxzxzx

n

xxx

nn

nn

zzz

xHxHxHxxxHxH

1,0,...,,

21

...

2121

21

2211

21

...1
2

1

110
2

1
...110

2

1
110

2

1

......

 …   (IV-48) 

The above equation above can be written more succinctly as 

                                   
 



 
n

z

zx

n

n zxH
1,0

.
1

2

1
           …                                  (IV-49) 

where x · z denotes the bitwise inner product of x and z, modulo 2 (we are able to 

reduce modulo 2 since (−1)
2
 = 1). Note that addition modulo 2 is the same as the xor 

operation. The state after the final n-qubit Hadamard gate in the Deutsch–Jozsa 

algorithm is 

                     

     
  

   

  
 

 

 



 













 




























 
















n n

n n

z x

zxxf

n

x z

zx

n

xf

n

z

z

1,0 1,0

.

1,0 1,0

.

3

2

10
1

2

1

2

10
1

2

1
1

2

1


      …           (IV-50) 

At the end of the algorithm a measurement of the first register is made in the 

computational basis (just as was done for the Deutsch algorithm). To see what 

happens, consider the total amplitude (coefficient) of 
n

z


 0 in the first register of 

state
3 . This amplitude is 

                                                  

 




n

x

xf

n

1,0

1
2

1
       …                                             (IV-51) 
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Consider this amplitude in the two cases: f constant and f balanced. If f is constant, the 

amplitude of 
n

0 is either +1 or −1 (depending on what value f(x) takes). So if f is 

constant, a measurement of the first register is certain to return all 0s (by „all 0s‟ we 

mean the binary string 00 · · · 0). On the other hand, if f is balanced, then it is easy to 

see that the positive and negative contributions of the amplitudes cancel, and the 

overall amplitude of 
n

0 is 0. So if f is balanced, a measurement of the first register is 

certain not to return all 0s. So to determine whether f is constant or balanced, the first 

register is measured. If the result of the measurement is all 0s, then the algorithm 

outputs „constant‟, and otherwise it outputs „balanced‟. 

 

IV-6- Shor’s factoring algorithm [45] 

IV-6-1- Exponential speed-up in Shor’s factoring algorithm 

Shor‟s algorithm is without doubt not only one of the cornerstones of quantum 

information theory but also one of the most surprising advances in the theory of 

computation itself: a problem, which is widely believed to be hard becomes tractable 

by referring to (quantum) physics – an approach completely atypical for the theory of 

computation, which usually abstracts away from any physical realization. 

The problem Shor‟s algorithm deals with is factorization, a typical NP problem. 

Consider for instance the task of finding the prime factors of 421301.With pencil and 

paper it might probably take more than an hour to find them. The inverse problem, the 

multiplication 601×701, can, however, be solved in a few seconds even without having 

pencil and paper at hand. The crucial difference between the two tasks multiplication 

and factoring is, however, how the degree of difficulty increases with he length of the 

numbers. Whereas multiplication belongs to the class of “tractable” problems for 

which the required number of elementary computing steps increases polynomially with 

the size of the input, every known classical factoring algorithm requires an 

exponentially increasing number of steps. This is what is meant by saying that 

factoring is an “intractable” or “hard” problem. In a nutshell the idea of Shor‟s 

factoring algorithm is the following: 
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(1) Classical part: Using some elementary number theory one can show that the 

problem of finding a factor of a given integer is essentially equivalent to determining 

the period of a certain function. [34] 

(2) Implement the function from step (1) in a quantum circuit and apply it to a 

superposition of all classical input states. Then perform a discrete quantum Fourier 

transform (QFT) and measure the output. The measurement outcomes will be 

probabilistically distributed according to the inverse of the sought period. The latter 

can thus be determined (with certain probability) by repeating the procedure. 

(3) Efficient implementation: The crucial point of the algorithm is that the QFT as well 

as the function from step (1) can be efficiently implemented, i.e., the number of 

required elementary operations grows only polynomially with the size of the input. 

Moreover, the probability of success of the algorithm can be made arbitrary close to 

one without exponentially increasing effort. 

Clearly, the heart of the algorithm is an efficient implementation of the QFT. Since 

Fourier transforms enter in many mathematical and physical problems one might 

naively expect an exponential speedup for all these problems as well. However, the 

outcome of the QFT is not explicitly available but “hidden” in the amplitudes of the 

output state, which can not be measured efficiently. Only global properties of the 

function, like its period, can in some cases be determined efficiently. 

Nevertheless, a couple of other applications are known for which the QFT leads again 

to an exponential speed up compared to the known classical algorithms. The abstract 

problem, which encompasses all these applications is known as the “hidden subgroup 

problem” and another rather prominent representative of this type is the discrete 

logarithm problem. Let us now have a more detailed look at the ingredients for Shor‟s 

algorithm. 

 

IV-6-2- Classical part 

Let N be an odd number we would like to factor and a < N an integer which has no 

non-trivial factor in common with N, i.e., gcd(N, a) = 1. The latter can efficiently be 

checked by Euclid‟s algorithm. A factor of N can then be found indirectly by 

determining the period p of the function f : Z→ZN defined as f(x) = a
x
 modN.  



Chapter IV                                                                                                  Quantum computers 

U.H.B.C 123 

Hence, we are looking for a solution of the equation a
p
 −1 = 0 modN. Assuming p to 

be even we can decompose a
p
 − 1 = (a

p/2
 + 1)(a

p/2
 − 1) = 0 modN,  and therefore either 

one or both terms (a
p/2
 1) must have a factor in common with N. Any non-trivial 

common divisor of N with (a
p/2
 1), again calculated by Euclid‟s algorithm, yields 

thus a non-trivial factor of N. 

Obviously, the described procedure is only successful if p is even and the final factor 

is a non-trivial one. Fortunately, if we choose a at random, this case occurs with 

probability larger than one half unless N is a power of a prime. The latter can, 

however, be checked again efficiently by a known classical algorithm, which returns 

the value of the prime. Altogether a polynomial time algorithm for determining the 

period of the function above leads to a probabilistic polynomial time algorithm which 

either returns a factor of N or tells us that N is prime. 

 

IV-6-3- Quantum Fourier Transform 

The step from the ordinary discrete Fourier transform (based on matrix multiplication) 

to the Fast Fourier Transform (FFT) has been of significant importance for signal and 

image processing as well as for many other applications in scientific and engineering 

computing. Whereas the naive way of calculating the discrete Fourier transform                                                                                                                                                         









1

0

2
1 n

x

xy
n

i

xy ec
n

c



           …                             (IV-52) 

by matrix multiplication takes O(n
2
) steps, the FFT requires O(n log n). The quantum 

Fourier transform (QFT) is in fact a straightforward quantum generalization of the 

FFT, which can, however, be implemented using only O((log n)
2
) elementary 

operations – an exponential speedup. 

Let now the computational basis states of q qubits be characterized by the binary 

representation of numbers 

                              



q

i

i

ixx
1

12  via qxxx ,...,1          …                                (IV-53) 

That is, in this subsection x denotes from now on a natural number or zero and not a 

binary word. Then for n = 2
q
 the QFT acts on a general state vector of q qubits as 
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                                       



x y

yx ycxc             …                                          (IV-54)  

This transformation can be implemented using only two types of gates: the Hadamard 

gate and conditional phase gates Pd acting as 
diba

ebaba 2
2,

,,
 

 , which rotate the 

relative phase conditionally by an angle π2
−d

, where d is the “distance” between the 

two involved qubits. Figure IV-19 shows the quantum circuit, which implements the 

QFT on q = 3 qubits. The extension of the circuit to more than three qubits is rather 

obvious and since q(q + 1)/2 gates are required its complexity is O(q
2
) = O((log n)

2
). 

Being only interested in an approximate QFT we could reduce the number of gates 

even further to O(log n) by dropping all phase gates Pd with d ≥ m. Naturally, the 

accuracy will then depend on m. 

 

 

 

 

 

Figure V-19: The circuit of a discrete quantum Fourier transform on three qubits. [37] 

 

IV-6-4- Joining the pieces 

Let us now sketch how the QFT can be used to compute the period p of the function in 

the equation above efficiently. Consider two registers of q qubits each, where 2
q 

= n ≥ 

N
2
 and all the qubits are in the state vector 0  initially. Applying a Hadamard gate to 

each qubit in the first register yields 

                                                 
x

x
n

0,
1

          …                                              (IV-55)  

Now suppose we have implemented the function above in a quantum circuit which 

acts as )(,0, xfxx  , where x is taken from Zn. Applying this to the state vector and 

then performing a QFT on the first register we obtain 

                                       




1

0,

2

)(,
1 n

yx

xy
n

i

xfye
n



      …                                                (IV-56)  
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How will the distribution of measurement outcomes look like if we now measure the 

first register in computational basis? Roughly speaking, the sum over x will lead to 

constructive interference whenever y/n is close to a multiple of the inverse of the 

period p of f and it yields destructive interference otherwise. Hence, the probability 

distribution for measuring y is sharply peaked around multiples of n/p and p itself can 

be determined by repeating the whole procedure O(log N) times. At the same time the 

probability of success can be made arbitrary close to one. In the end we can anyhow 

easily verify whether the result, the obtained factor of N, is valid or not. What remains 

to be shown is that the map )(,0, xfxx  ,  Naxf x mod)(   can be implemented 

efficiently. This can be done by repeatedly squaring in order to get a
2j 

mod N and then 

multiplying a subset of these numbers according to the binary expansion of x. This 

requires O(log N) squarings and multiplications of log N-bit numbers. For each 

multiplication a standard algorithm requires O((logN)
2
) steps. Hence, implementing 

this simple classical algorithm on our quantum computer we can compute f(x) with 

O((logN)
3
) elementary operations. In fact, this part of performing a standard classical 

multiplication algorithm on a quantum computer is the bottleneck in the quantum part 

of Shor‟s algorithm. If there would be a more refined quantum modular exponentiation 

algorithm we could improve the asymptotic performance of the algorithm. 

Altogether, the quantum part of Shor‟s factoring algorithm requires of the order 

(logN)
3
 elementary steps, i.e., the size of the circuit is cubic in the length of the input. 

As described above, additional classical preprocessing and postprocessing is necessary 

in order to obtain a factor of N. The time required for the classical part of the 

algorithm is, however, polynomial in logN as well, such that the entire algorithm does 

the job in polynomial time. In contrast to that, the running time of the number field 

sieve, which is currently the best classical factoring algorithm, is exp[O((logN)
1/3

 (log 

logN)
2/3

 )]. Moreover, it is widely believed that factoring is a classically hard problem, 

in the sense that there exists no classical polynomial time algorithm. However, it is 

also believed that proving the latter conjecture (if it is true) is extremely hard since it 

would solve the notorious P = NP problem. 
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IV-7- Case of study “comparison between the linear ’classical’ search algorithm 

and Grover’s search algorithm” 

As an illustration of how quantum algorithms are faster than classical algorithms, let 

us discuss the Grover‟s search algorithm comparing to classical “linear” search 

algorithm. 

 

IV-7-1- The classical search algorithm 

In computer science, linear search is a search algorithm, also known as sequential 

search, which is suitable for searching a set of data for a particular value. 

It operates by checking every element of a list one at a time in sequence until a match 

is found. Linear search runs in O(N). If the data are distributed randomly, on average 

(N+1)/2 comparisons will be needed. The best case is that the value is equal to the first 

element tested, in which case only 1 comparison is needed. The worst case is that the 

value is not in the list (or is the last item in the list), in which case N comparisons are 

needed. 

The simplicity of the linear search means that if just a few elements are to be searched 

it is less trouble than more complex methods that require preparation such as sorting 

the list to be searched or more complex data structures, especially when entries may be 

subject to frequent revision. Another possibility is when certain values are much more 

likely to be searched for than others and it can be arranged that such values will be 

amongst the first considered in the list. 

The following pseudocode describes the linear search technique. 

For each item in the list: 

  Check to see if the item you're looking for matches the item in the list. 

    If it matches. 

      Return the location where you found it. 

    If it does not match. 

      Continue searching until you reach the end of the list. 

If we get here, we know the item does not exist in the list. Return -1. 

In computer implementations, it is usual to search the list in order, from element 1 to N 

(or 0 to N - 1, if array indexing starts with zero instead of one) but a slight gain is 

http://www.answers.com/topic/computer-science
http://www.answers.com/topic/search-algorithm
http://www.answers.com/topic/big-o-notation
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possible by the reverse order. Suppose an array A having elements 1 to N is to be 

searched for a value x and if it is not found, the result is to be zero. 

for i:=N:1:-1 do                 %Search from N down to 1. (The step is -1) 

 if A[i] = x then QuitLoop i; 

next i; 

Return(i);          %Or otherwise employ the value. 

Implementations of the loop must compare the index value i to the final value to 

decide whether to continue or terminate the loop. If this final value is some variable 

such N then a subtraction (i - N) must be done each time, but in going down from N the 

loop termination condition is for a constant, and moreover a special constant. In this 

case, zero. Most computer hardware allows the sign to be tested, especially the sign of 

a value in a register, and so execution would be faster. In the case where the loop was 

for arrays indexed from zero, the loop would be for i:=N - 1:0:-1 do and the test on the 

index variable would be for it negative, not zero. 

Finally this is the representation of the linear search algorithm by pascal programming 

language: 

   Linear search algorithm 

Function   linear {var A: list type: n, x : integer}: integer; 

    Var 

         i: integer; 

         answer: integer; 

    begin   {linear} 

           answer:= 0; 

            i:= 1 

                  while {i<= n} and {answer:=0} do 

                         begin 

                               if A{i}= x 

                                then answer:=i 

                                else incr {i} 

                          end; 

              linear:= answer 
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   end;  {linear} 

 

IV-7-2- Quantum Mechanical Algorithms  

A good starting point to think of quantum mechanical algorithms is probabilistic 

algorithms. In these algorithms, instead of having the system in a specified state, it is 

in a distribution over various states with a certain probability of being in each state. At 

each step, there is a certain probability of making a transition from one state to 

another. The evolution of the system is obtained by premultiplying this probability 

vector (that describes the distribution of probabilities over various states) by a state 

transition matrix. Knowing the initial distribution and the state transition matrix, it is 

possible in principle to calculate the distribution at any instant in time. 

Just like classical probabilistic algorithms, quantum mechanical algorithms work with 

a probability distribution over various states. However, unlike classical systems, the 

probability vector does not completely describe the system. In order to completely 

describe the system we need the amplitude in each state which is a complex number. 

The evolution of the system is obtained by premultiplying this amplitude vector (that 

describes the distribution of amplitudes over various states) by a transition matrix, the 

entries of which are complex in general. The probabilities in any state are given by the 

square of the absolute values of the amplitude in that state. It can be shown that in 

order to conserve probabilities, the state transition matrix has to be unitary. 

The machinery of quantum mechanical algorithms is illustrated by discussing the three 

operations that are needed in Grover algorithm. The first is the creation of a 

configuration in which the amplitude of the system being in any of the 2
n
 basic states 

of the system is equal; the second is the Walsh-Hadamard transformation operation 

and the third the selective rotation of different states. 

A basic operation in quantum computing is that of a “fair coin flip” performed on a 

single bit whose states are 0 and 1. This operation is represented by the following 

matrix:  

                                         











11

11

2

1
M    …                                                     (IV-57) 
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A bit in the state 0 is transformed into a superposition in the two states: 








2

1
,

2

1
. 

Similarly a bit in the state 1 is transformed into 






 

2

1
,

2

1
i.e. the magnitude of the 

amplitude in each state is 
2

1
but the phase of the amplitude in the state 1 is inverted. 

The phase does not have an analog in classical probabilistic algorithms. It comes about 

in quantum mechanics since the amplitudes are in general complex. In a system in 

which the states are described by n bits (it has 2
n
 possible states) we can perform the 

transformation M on each bit independently in sequence thus changing the state of the 

system. The state transition matrix representing this operation will be of dimension     

2
n
 X 2

n
. In case the initial configuration was the configuration with all n bits in the first 

state, the resultant configuration will have identical amplitude of 22

n


 in each of the 2
n
 

states. This is a way of creating a distribution with the same amplitude in all 2
n 

states. 

Next consider the case when the starting state is another one of the 2
n
 states, i.e. a state 

described by an n bit binary string with some 0s and some 1s. The result of performing 

the transformation M on each bit will be a superposition of states described by all 

possible n bit binary strings with amplitude of each state having a magnitude equal to 

and sign either + or -. To deduce the sign, observe that from the definition of the 

matrix M, i.e. 











11

11

2

1
M , the phase of the resulting configuration is changed 

when a bit that was previously a 1 remains a 1 after the transformation is performed. 

Hence if


x  be the n-bit binary string describing the starting state and


y  the n-bit binary 

string describing the resulting string, the sign of the amplitude of


y  is determined by 

the parity of the bitwise dot product of


x  and


y  , i.e.  



yx .

1  . This transformation is 

referred to as the Walsh-Hadamard transformation. This operation (or a closely related 

operation called the Fourier Transformation) is one of the things that makes quantum 

mechanical algorithms more powerful than classical algorithms and forms the basis for 

most significant quantum mechanical algorithms. 
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The third transformation that we will need is the selective rotation of the phase of the 

amplitude in certain states. The transformation describing this for a 4 state system is of 

the form:  

                                        





















4

3

2

1

000

000

000

000









j

j

j

j

e

e

e

e

      …                                       (IV-58),  

where 1j and 4321 ,,,  are arbitrary real numbers. 

Note that, unlike the Walsh-Hadamard transformation and other state transition 

matrices, the probability in each state stays the same since the square of the absolute 

value of the amplitude in each state stays the same. 

 

IV-7-3- The Problem  

Let a system have N = 2
n
 states which are labelled S1,S2,...SN. These 2

n
 states are 

represented as n bit strings. Let there be a unique state, say S, that satisfies the 

condition C(S) =1, whereas for all other states S, C(S) = 0 (assume that for any state 

S, the condition C(S) can be evaluated in unit time). The problem is to identify the 

state S

 

IV-7-4- Algorithm 

1- Initialize the system to the distribution: 








NNN

1
,...,

1
,

1
, i.e. there is the same 

amplitude to be in each of the N states. This distribution can be obtained in O(logN) 

steps. 

2- Repeat the following unitary operations O  N times 

a- Let the system be in any state S: 

In case C(S)=1 , rotate the phase by  radians; 

In case C(S)=0 , leave the system unaltered. 

b- Apply the diffusion transform D which is defined by the matrix D as follows: 

                           
N

Dij

2
 if ji  and 

N
IDii

2
      …                                       (IV-59) 
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This diffusion transform, D, can be implemented as D=WRW , where R the rotation 

matrix and W the Walsh Hadamard Transform Matrix are defined as follows: 

Rij=0 if ji   ; 

Rii=1 if i=0; Rii=-1 if 0i  . 

As discussed in before: 



  jin

ijW )1(2 2/ , where


i  is the binary representation of i , and 


ji . denotes the bitwise 

dot product of the two n bit strings 


i and 


j  . 

3- Sample the resulting state. In case C(Sv)=1 there is a unique state Ssuch that the 

final state is S with a probability of at least  1/2. 

 

IV-7-5- Explanation of the algorithm 

The loop in step 2, is the heart of the algorithm. Each iteration of this loop increases 

the amplitude in the desired state by 








N
O

1
 , as a result in NO  repetitions of the 

loop, the amplitude and hence the probability in the desired state reach O(1). In order 

to see that the amplitude increases by 








N
O

1
 in each repetition, we first show that the 

diffusion transform, D, can be interpreted as an inversion about average operation. A 

simple inversion is a phase rotation operation which is unitary. 

In the following we show that the inversion about average operation  is also a unitary 

operation and is equivalent to the diffusion transform D as used in step 2-a of the 

algorithm. 

Let denote the average amplitude over all states, i.e. if i be the amplitude in the i
th

 

state, then the average is 


N

i

i
N 1

1
  . As a result of the operation D, the amplitude in 

each state increases (decreases) so that after this operation it is as much below (above) 

as it was above (below) before the operation. 
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Figure IV-20: Inversion about average operation. [40] 

 

The diffusion transform, D, is defined as follows: 

                             Dij=2/N if ji  and Dii=-1+2/N     …                                     (IV-60). 

Next it is proved that D is indeed the inversion about average as shown in Figure IV-

20 . Observe that D can be represented in the form D=-I+2P where I is the identity 

matrix and P is a projection matrix with Pij=1/N for all i,j. The following two 

properties of Pare easily verified: first, that P
2
=P and second, that P acting on any 

vector gives a vector 


v  each of whose components is equal to the average of all 

components. 

Using the fact that P
2
=P , it follows immediately from the representation D=-I+2P that 

D
2
=I and hence D is unitary. 

In order to see that D is the inversion about average, consider what happens when D 

acts on an arbitrary vector 


v . Expressing D as –I+2P, it follows that: 

 


 vPvvPIvD 22 . Each component of the vector


v  is A where A is the 

average of all components of the vector


v  . Therefore the i
th 

component of the vector is 

given by (-vi+2A) which can be written as (A+(A-vi)) which is precisely the inversion 

about average. 

Next consider what happens when the inversion about average operation is applied to 

a vector where each of the components, except one, are equal to a value, say C, which 

is approximately 
N

1
; the one component that is different is negative. The average A 

is approximately equal to C. Since each of the (N-1) components is approximately 

equal to the average, it does not change significantly as a result of the inversion about 
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average. The one component that was negative to start out, now becomes positive and 

its magnitude increases by approximately 2C, which is approximately
N

2
. 

 

 

 

 

 

Figure IV-21: The inversion about average operation [40] 

 

In the loop of step 2, first the amplitude in a selected state is inverted (this is a phase 

rotation and hence a valid quantum mechanical operation). Then the inversion about 

average operation is carried out. This increases the amplitude in the selected state in 

each iteration by 








N
O

1
 (this is formally proved in theorem IV-1). 

Theorem IV-7 [40] 

Let the state vector before step 2-a of the algorithm be as follows : for the one state 

that satisfies C(S)=1, the amplitude is k, for each of the (N-1) remaining states the 

amplitude is l such that 








2

1
0  k and 0l . The change in k )( k  after steps (a) 

and (b) of the algorithm is lower bounded by 
N

k
2

1
 . Also after steps (a) and (b), 

0l  . 

Using Theorem IV-7, it immediately follows that there exists a number M less than 

N2 , such that in M repetitions of the loop in step 2, k will exceed 
2

1
. Since the 

probability of the system being found in any particular state is proportional to the 

square of the amplitude, it follows that the probability of the system being in the 

desired state when k is 
2

1
 , is k

2
=1/2. Therefore if the system is now sampled, it will 

be in the desired state with a probability greater than 1/2. 
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Theorem IV-8 [40] 

D can be expressed as D=WRW, where W, the Walsh-Hadamard Transform Matrix 

and R, the rotation matrix, are defined as follows 

                                                    Rij=0 if ji                   …                                 (IV-61) 

                                            Rii=I if  i=0, Rii=-I  if  0i   …                               (IV-62) 

                                                    


  jin

ijW 12 2/       …                                        (IV-63) 

Theorem IV-9 [40] 

Let the state vector be as follows :  for any one state the amplitude is k1, for each of the 

remaining (N-1) states the amplitude is l1. Then after applying the diffusion transform 

D, the amplitude in the one state is  

                                   
 

112

1
21

2
l

N

N
k

N
k











      …                                         (IV-64) 

and the amplitude in each of the remaining (N-1) states is  

                                        
 

112

22
l

N

N
k

N
l


       …                                             (IV-65) 

 

IV-7-6- How fast is it possible to find the desired element:  

There is a matching lower bound that suggests that it is not possible to identify the 

desired element in fewer than  N steps. This result states that any quantum 

mechanical algorithm running for T steps is only sensitive to O(T
2
)queries (i.e. if there 

are more possible queries, then the answer to at least one can be flipped without 

affecting the behaviour of the algorithm). So in order to correctly decide the answer 

which is sensitive to N queries will take a running time of T=  N . To see this 

assume that C(S)=0 for all states and the algorithm returns the right result, i.e. that no 

state satisfies the desired condition. Then, if T<  N , the answer to at least one of 

the queries about C(S) for some S can be flipped without affecting the result, thus 

giving an incorrect result for the case in which the answer to the query was flipped. 
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IV-7-7- Implementation considerations  

This algorithm is likely to be simpler to implement as compared to other quantum 

mechanical algorithms for the following reasons: 

1- The only operations required are, first, the Walsh-Hadamard transform, and second, 

the conditional phase shift operation both of which are relatively easy as compared to 

operations required for other quantum mechanical algorithms. 

2- Quantum mechanical algorithms based on the Walsh-Hadamard transform are likely 

to be much simpler to implement than those based on the “large scale Fourier 

transform”. 

3- The conditional phase shift would be much easier to implement if the algorithm was 

used in the mode where the function at each point was computed rather than retrieved 

form memory. This would eliminate the storage requirements in quantum memory. 

4- In case the elements had to be retrieved from a table (instead of being computed), in 

principle it should be possible to store the data in classical memory and only the 

sampling system need be quantum mechanical. This is because only the system under 

consideration needs to undergo quantum mechanical interference, not the bits in the 

memory. What is needed, is a mechanism for the system to be able to feel the values at 

the various datapoints something like what happens in interaction-free measurements. 

Note that, in any variation, the algorithm must be arranged so as not to leave any trace 

of the path followed in the classical system or else the system would not undergo 

quantum mechanical interference. 

 

IV-7-8- The programme of Grover’s search algorithm in MATLAB programme 

%Search Alghorithm. 

clear all; 

%-----parameters----------- 

nqubits=6;   %number of q-bits 

n=2^nqubits;  %nnumber of elements in database 

findmode=mod(round(n*rand+1),n);  %desired element 

%-----defining quantum gates 

d=-eye(n)+2/n;  %diffusion transform 
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oracle=eye(n);  %oracle 

oracle(findmode,findmode)=-1;  

%--calculate the optimal number of iterations--- 

finish=round(pi/4*sqrt(n)); 

%--step(i)--initialization---- 

psistart=ones(n,1)/sqrt(n); 

psi=psistart*exp(i*rand); 

%step (ii)--algorithm body---- 

for steps=1:finish 

steps 

psi=d*oracle*psi; 

probability(steps)=psi(findmode)*conj(psi(findmode)); 

end 

%see the probability dynamics 

plot(probability); 

%see the result distribution 

figure; 

stem(psi.*conj(psi)); 

 

IV-7-9- Simulation of Grover algorithm with MATLAB programme: Example of 

6nqubits : 

>> nqubits=6 

nqubits = 6 

>> n=2^nqubits 

n =  64 

>> findmode=mod(round(n*rand+1),n) 

findmode = 62 

>> d=-eye(n)+2/n; 

>> plot(d) 
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>> oracle=eye(n); 

>> plot(oracle) 
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>> oracle(findmode,findmode)=-1; 

>> plot(oracle) 
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>> finish=round(pi/4*sqrt(n)) 

finish =  6 

>> psistart=ones(n,1)/sqrt(n); 

>> plot(psistart) 
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Plot psistart figure "initialization"

 

>> psi=psistart*exp(i*rand); 

>> for steps=1:finish 
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Steps 

psi=d*oracle*psi; 

probability(steps)=psi(findmode)*conj(psi(findmode)); 

end 

>> figure; 

>> stem(psi.*conj(psi)); 
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IV-8- Conclusion: 

Quantum computers may solve some problems dramatically faster than conventional 

machines. One example is searching an unordered set for an item with specific 

properties. A quantum algorithm can find such an item (a "solution") in a time 

proportional to the square root of the size of the set, which is considerably faster than 

conventional ("classical") methods that take the same time as the size of the set. 

Comparing to classical algorithm, with one solution out of 10 items, four steps of the 

quantum algorithm give less chance for a solution than two steps, showing the 

quantum algorithm can perform worse with more steps. And With one solution out of 
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1000 items, the quantum algorithm performs well with just 25 steps, which is much 

better than the classical method. Thus the control number of items and steps set the 

difficulty of the problem by changing the size of the set and the number of steps. 

The classical algorithm is generate-and-test, that is, examine items one at a time until a 

solution is found. When the set has n items, the probability of finding a solution 

increases monotonically with the number of items examined until, after n steps; a 

solution is guaranteed to be found. The classical algorithm stops as soon as it finds a 

solution. 

In the quantum algorithm, due to Lov Grover, the probability of finding a solution is 

close to 1 when the number of steps is about   n
4

 . So the average number of steps in 

finding a solution is proportional to n , much less than the linear growth with n for the 

classical algorithm. The quantum algorithm gives no answer until it completes the 

prespecified number of steps, and must restart from the beginning if it does not find a 

solution. Each repetition adds to the total number of steps required by the algorithm. 

Thus, if Psteps is the probability of finding a solution when run for a given number of 

steps, the average number of steps required to find a solution, including any repetitions 

is: steps/Psteps. 

The probability for the quantum algorithm to find a solution oscillates with the number 

of steps. So taking more steps than needed to reach probability near 1 decreases the 

chance of finding a solution. Thus, the quantum algorithm requires care in selecting 

the number of steps. In addition, physical implementation of the quantum method in 

terms of qubits is simplest when the number of items is a power of two.  

Finally,  we can suspect that quantum computers work better than classical one 

because quantum computers need not limit themselves to checking each entry in 

succession. Instead, quantum computers can check several candidates at once using 

quantum parallelism. Unfortunately, the same quantum rules that let quantum 

computers feign parallelism exact a terrible price: they make it impossible to learn the 

individual outcomes of all the parallel computations, permitting instead only a 

collective property to be determined. Fortunately, this still offers enough of an 

advantage to let a quantum search beat a classical search. 
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During the past forty years astounding advances have been made in the manufacture of 

computers. The number of atoms needed to represent a bit in memory has been 

decreasing exponentially since 1950. Likewise the numbers of transistors per chip, 

clock speed, and energy dissipated per logical operation have all followed their own 

improving exponential trends. This rate of improvement cannot be sustained much 

longer; at the current rate in the year 2020 one bit of information will requite only one 

atom to represent it. The problem is that at that size the behaviour of a computer's 

components will be dominated by the principles of quantum physics. 

As it is shown in the first chapter of our thesis when components shrink to where their 

behaviour will soon be dominated more by quantum physics than classical physics, 

researchers have begun to investigate the potential of these quantum behaviours for 

computation. These physical limitations of the classical computer and the possibility 

that the quantum computer can perform certain useful tasks more rapidly than any 

classical computer drive the study of quantum computing. 

In chapter two after we present the important notions of quantum mechanics used in 

our thesis result, we move to talk about qubits. In a quantum computer, the 

fundamental unit of information (called a quantum bit or qubit), is not binary but 

rather more quaternary in nature.  This qubit property arises as a direct consequence of 

its adherence to the laws of quantum mechanics which differ radically from the laws of 

classical physics.  A qubit can exist not only in a state corresponding to the logical 

state 0 or 1 as in a classical bit, but also in states corresponding to a blend or 

superposition of these classical states. 

In chapter three we discuss the progress which has been made in recent years in the 

experimental controlled manipulation of very small quantum systems that cannot be 

called other than spectacular, in a way that was not imaginable not long ago. Quantum 

gates have been implemented in the quantum optical context, and with nuclear 

magnetic resonance (NMR) techniques, single and coupled quantum dots experiment, 

charge and spin control in quantum dots experiment, spin relaxation and quantum dot 

quantum computing experiment using control over spins, even small quantum 

algorithms have been realized. Any such implementation will eventually have live up 
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to some requirements that have may be most distinctly been formulated by 

DiVincenzo as generic requirements in practical quantum computation.  

In parallel to the development of the application of quantum physics in the creation of 

quantum computers, also quantum algorithms were developed. In the fourth chapter 

we discuss the development of these algorithms which lead us to confirm the capacity 

and the speed of quantum computers as a final result of our work. In the same 

scientific paper in which David Deutsch introduced the notion of the universal 

quantum computer, he also presented the first quantum algorithm. Yet the Deutsch 

algorithm already exemplifies the advantages of a quantum computer through 

skillfully exploiting quantum parallelism. Like the Deutsch algorithm, other 

elementary quantum algorithms as Deutsch-Jozsa’s algorithm and Simon’s algorithm 

amount to deciding which black box out of finitely many alternatives one has at hand. 

Such a black box is often also referred to as oracle. An input may be given to the 

oracle, one may read out or use the outcome in later steps of the quantum algorithm, 

and the objective is to find out the functioning of the black box. It is assumed that this 

oracle operation can be implemented with some sequences of quantum logic gates.  

Following Deutsch's algorithm, Shor demonstrated in 1994 that integers can be 

efficiently factorized on a quantum computer. It has lead to extensive work on 

developing new quantum algorithms. Finally we consider a case of study which is a 

comparison between Grover's algorithm or quantum "data base" search algorithm and 

classical "data base" search algorithm. As a result we find that Grover's algorithm 

allows a quantum computer to perform an unstructured search quadratically faster than 

any classical algorithm. This improves the capacity and the speed of quantum 

computers.  

Now we know what purposes a quantum computer may serve, what tasks it may 

perform well, better than any classical computer, and have sketched what the 

underlying computational model is like. Also, ways have been described to fight 

decoherence that is due to the coupling to the environment, and eventually to the same 

devices that are designed to perform the read-out.  
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APPENDIX A 

A-1- Lithography: 

Optical lithography (photolithography) is a major application in the particle-matter 

interaction, and constitutes the classical process for fabricating integrated circuits. It is 

a key step in defining circuit patterns, and remains a barrier to any future development. 

Since resolution, at the out set, appears to be directly proportional to wave-length, 

feature size first progressed by a step-wise shortening of the wave length of the 

radiation used. 

The operation works via a reduction lens system, by the exposure of photoresist film to 

energy particles from the Ultraviolet photons currently used through to x photons, 

ions, and finally electrons, all through a mask template carrying a pattern of the 

desired circuit. The aim of all this is to transfer this pattern on to a stack of insulating 

or conducting layers that make up the mask. These layers will have been deposited 

previously (the layering stage) on a wafer of semiconductor material, generally silicon. 

After this process, the resin dissolves under exposure to the air (development). The 

exposed parts of the initial layer can then be etched selectively, then the resin is lifted 

away chemically before deposition of the following layer. This lithography step can 

take place over twenty times during the fabrication of an integrated circuit. 

In the 1980's, the micro electronics industry used mercury lamps delivering near UV 

through quartz optics, with an emission line of 436 nanometers (nm). This system was 

able to etch structures to a feature size of 3microns. This system was used through to 

the mid 90s, when it was replaced by excimer laser; which is a laser in which 

resonance cavity contains a halogen gas (for example, an argon fluorine mixture) and 

which delivers UV light pulses with durations in the nanosecond range and energies of 

the order of a few hundred mj; emitting far UV light (KrF, krypton fluoride at 248 nm 

then ArF, argon fluoride at 193 nm, with the photons thus created generating several 

electron volts) that were able to reach a resolution of 110 nm, pushed to under 90 nm 

with new processes. 

In the 1980s, the CEA's (Electronics and Information Technology Laboratory) 

pioneered the application of lasers in lithography and the fabrication of integrated 

circuit production still uses these sources. 
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The next step for high volume production was expected to be the F2 laser (157 nm), 

but this lithography technology has to all intents and purposes been abandoned due to 

complications involved in producing optics in CaF2, which is transparent at this wave 

length. While the shortening of wave lengths in exposure tools has been the driving 

factor behind the strong resolution gain already achieved, two other factors have 

nevertheless played key roles. The first was the development of play mer-latice 

photoresist with low absorbance at the wave lengths used, implementing progressively 

more innovation input energy reflection/emission systems. The second was enhanced 

optics reducing diffraction interference (better surface quality, increase in numerical 

aperture). 

Over the years, the increasing complexity of the optical systems has led to resolutions 

actually below the source wave-length. This development could not continue without a 

major technological break through a huge step forward in wave-length. For 

generations of integrated circuits with a lowest resolution of between 80 and 50 nm 

(the next node being at 65 nm), various different approaches are competing to offer 

particle projection at ever shorter wavelengths. They use either "soft" x-rays at 

extreme ultraviolet wavelength (around 10nm), "hard" x-ray at wavelengths below 

1nm, ions or electrons. 

The step crossing below the 50nm barrier will lead towards low-electron energy 

(10eV) enabled nano lithography with technology solution such as the scanning 

tunneling microscope and molecular beam epitaxy for producing "superlattices".  

A-2- Molecular beam epitaxy: 

Quantum wells are grown using Molecular Beam Epitaxy (from the greek taxi, 

meaning order, and epi, meaning over), or MBE. The principle of this physical 

deposition technique, which was first developed for growing III-V semiconductor 

crystals, is based on the evaporation of ultra-pure elements of the component to be 

grown, in a furnace under ultra-high vacuum (where the pressure can be as low as 

5.10
-11

 mbar) in order to create a pure, pollution-free space. 

One or more thermal beams of atoms or molecules react on the surface of a single-

crystal wafer placed on a substrate kept at high temperature (several hundred °C), 

which serves as a lattice for the formation of a film called epitaxial film. It thus 
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becomes possible to stack ultra-thin layers that measure a millionth of millimeter each; 

ie: composed of only a few atom planes. 

The elements are evaporated or sublimated from an ultra-pure source placed in 

effusion cell (or Knudsen cell; an enclosure where a molecular flux moves from a 

region with a given pressure to another region of lower pressure) heated by the Joule 

effect. 

A range of structural and analytical probes can monitor film growth in situ in real time, 

particularly using surface quality analysis and grazing angle phase transitions by 

LEED (Low Energy Electron Diffraction) or RHEED (Reflection High Energy 

Electron Diffraction). Various spectroscopic methods are also used, including Auger 

electron spectroscopy, Secondary Ion Mass Spectrometry (SIMS), X-ray Photoelectron 

Spectrometry (XPS) or Ultraviolet Photon Electron Spectrometry (UPS). 

As ultra-high vacuum technology has progressed, molecular beam epitaxy has 

branched out to be applied beyond III-V semiconductors to embrace metals and 

insulators. In fact, the vacuum in the growth chamber, whose design changes 

depending on the properties of the matter intended to be deposited, has to be better 

than 10
-11

mbar in order to grow an ultra-pure film of exceptional crystal quality at 

relatively low substrate temperatures. This value corresponds to the vacuum quality 

when the growth chamber is a trest. Arsenide's, for example, grow at a residual 

vacuum of around 10
-8

mbar as soon as the arsenic cell has reached its set growth the 

temperature. 

The pumping necessary to achieve these performance levels draws on several 

techniques using ion pumps, cryopumping, titanium sublimation pumping, diffusion 

pumps or turbo-molecular pumps. The main impurities (H2, H2O, CO, and CO2) can 

present partial pressures of lower than 10
-13

mbar. 

A-3- Phase Kick-Back 

When described in the classical basis, the CNOT gate appears to do nothing to the 

control qubit, it can in fact affect the control qubit just as much as it does the target 

qubit. For example, in the Hadamard basis, the role of control and target qubit is 

effectively switched, for example, 
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is an eigenvector (or eigenstate) of the X(NOT) gate with 

eigenvalue −1, and an eigenvector of the identity gate with eigenvalue +1. Since the 

CNOT applies the NOT gate to the target qubit if the first qubit is in state 1 , we get 
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Since the CNOT applies the identity gate (i.e. does ‘nothing’) to the target qubit if the 

first qubit is in state 0 , we get 













 













 

2

10
0

2

10
0: CNOT  

Since the target qubit is in an eigenstate, it does not change, and we can effectively 

treat the eigenvalue as being ‘kicked back’ to the control register. 

Note that this can be summarized as 

 












 














 

2

10
1

2

10
: bbCNOT

b
  

where  1,0b . When the control qubit is in a superposition of 0 and 1 , we have 

   












 














 


2

10
10

2

10
10: 1010  CNOT  

 (notice this corresponds to effecting the Z gate to the control qubit). 

Let us consider the effect of a more general 2-qubit gate Uf implementing an arbitrary 

function    1,01,0: f by mapping  xfyxyxU f   (this mapping is 

reversible even though the function f may not itself be invertible). 

Let us fix the target register to the state  10
2

1
 , and analyse the action of Uf on an 

arbitrary basis state in the control qubit: 
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   

   












 

















 













 

2

10

2

10

2

10

2

10
:

xfxf
x

xfxxfxxUxU
xU

ff

f 

 

We know that the action of ‘ f(x)’ has no effect on a single bit if f(x) = 0 (i.e. b   0 = 

b), and ‘ f(x)’ flips the state of the bit if f(x) = 1. 

Consider the expression     xfxf  10
2

1
 in the two cases f(x) = 0 and f(x) = 

1: 

      
2

10
10

2

1
:0


 xfxfxf

      












 





2

10

2

01
10

2

1
:1 xfxfxf  

These two possibilities differ by a factor of (−1) which depends on the value of f(x). 

We have 

        













 


2

10
110

2

1 xf
xfxf  

So the above state can be rewritten as 

   













 


2

10
1

xf
x  

Associating the (−1)
f(x)

 factor with the first qubit, we have 

   













 














 

2

10
1

2

10
:

xf

f xxU   

When the control qubit is in a superposition of 0 and 1 , we have 

          












 














 


2

10
1101

2

10
10: 1

1

0

0

10 
ff

fU   

We can think of Uf as a 1-qubit operator .  xfU


 (which maps  xfbb  ) acting on 

the second qubit, controlled by the state x of the first register, as shown in Figure 6.6. 

We may sometimes write  xfUc


 instead of Uf . 
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Figure A-1: The 2-qubit gate  xfyxyxU f : can be thought of as a 1-qubit 

gate .  xfU


 acting on the second qubit, controlled by the first qubit. 

Notice in that the state 
2

10 
of the second register is an eigenvector of  xfU



. 

 

 

 

 

 

 

 

Figure A-2: The state 
2

10 
of the target register is an eigenstate of  xfU



. The 

eigenvalue (−1)
f(x)

 can be ‘kicked back’ in front of the target register. 
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APPENDIX B 

B-1- Fourier Transforms 

The Fourier transform defines a relationship between a signal in the time domain and 

its representation in the frequency domain. Being a transform, no information is 

created or lost in the process, so the original signal can be recovered from knowing the 

Fourier transform, and vice versa. 

The Fourier transform itself is defined by the equation  






 dtetxfX ftj 2)()(  

where X(f) is the Fourier transform of x(t) Frequency is measured in Hertz, with fas the 

frequency variable. 

B-2- Fast Fourier Transform 

The fast Fourier transform (FFT) is a discrete Fourier transform algorithm which 

reduces the number of computations needed for N points from 2N
2
to 2N lg N, where lg 

is the base-2 logarithm. If the function to be transformed is not harmonically related to 

the sampling frequency, the response of an FFT looks like a sinc function (although 

the integrated power is still correct). Aliasing (leakage) can be reduced by apodization 

using a tapering function. However, aliasing reduction is at the expense of broadening 

the spectral response.  

Fast Fourier transform algorithms generally fall into two classes: decimation in time, 

and decimation in frequency. The Cooley-Tukey FFT algorithm first rearranges the 

input elements in bit-reversed order, then builds the output transform (decimation in 

time). The basic idea is to break up a transform of length N into two transforms of 

length N/2 using the identity  

VI- The Quantum Fourier Transform  

Let us assume that we start with the state 0121 ... xxxxx NN   

which is the bit representation of the N digit number x with x0 being the value of the 

least significant bit, and xn-1 that value of the most significant bit. Thus the number x is 

http://mathworld.wolfram.com/DiscreteFourierTransform.html
http://mathworld.wolfram.com/Algorithm.html
http://mathworld.wolfram.com/Lg.html
http://mathworld.wolfram.com/Logarithm.html
http://mathworld.wolfram.com/SincFunction.html
http://mathworld.wolfram.com/Power.html
http://mathworld.wolfram.com/Aliasing.html
http://mathworld.wolfram.com/Leakage.html
http://mathworld.wolfram.com/Apodization.html
http://mathworld.wolfram.com/TaperingFunction.html
http://mathworld.wolfram.com/Aliasing.html
http://mathworld.wolfram.com/Algorithm.html
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given by  





1

0

2
N

m

m

mxx  with the xm taking the values 0 or 1. We now want to take this 

state to the state  



k

N

kxi

N
kkexF

N

...
2

1
0

22

2

  where k is the number represented by  







1

0

2
N

n

n

nkk  

Note that we have reversed the representation for k so that the least significant bit is 

represented by the first qubit state, and the most significant is represented by the last 

qubit state.  

Now, the phase factor can be rewritten as 



















 nN

m

Nmn

m

N

n n

iN

m

Nmn

m

N

n n

ikxi xkexkee
N 1

0

1

0

21

0

1

0

222 22   

since 122 
 Nmnie   if 0<n+m-N. We thus notice that the phase for any given value of n 

(ie the n-th least significant bit of k) depends only on the values of the bits of x of 

order less that N-1-n. If we line up the bit representations of k and x we have  

xN-1 xN-2 … xN-1-n … x1 x0 

k0 k1 … kn … kN-2 kN-1 

The Fourier factor which depends on kn is  

  












 
nN

m

nN

m

m

mnN

kiNmn

m

ki
xexe nn

1

0

1

0

1

1

22
22

  

and depends only on those bits of the representation of x which lie at or to the right of 

that bit in the representation of k. Furthermore, we note that in the factor which 

depends on kn, the phase which depends on the largest x bit, namely xN-1-n is 

nNnxki
e 1 which has only values of plus or minus 1.  

We can now perform the Fourier Transform bit by bit starting with the lowest digit of 

k, namely k0. Let me assume that we have managed to transform the state x by 

replacing the r-1 highest digits of x with the lowest r-1 digits of k. I.e., I have created, 

by some sequence of transformations, the state  
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 

 

   






















1,0...

01110

22

2

1

10

0

1
1

0 ......

2

1

r

rN

m

m
mrN

r

n

n

kk

rNr

xki

r
xxkkkex



 

We now show how to advance this to next stage where we will create the expression 

up to the rth bit. We can accomplish this by generating a transformation of the form  

  01110 ...... xxkkk rNr  

  02

1
1

1 110 ...2...
2

1
1 xxxekekk rN

k

rN

m

m

mrN

ki

r

xki

r

r

rrNr









 












    

This transformation can be decomposed into the two sets of transformations  

02110 ...... xxxkk rNrNr 
 

020

1

1 1

2
......2 xxkkxe rNr

rN

m

m

mrN

ki r










  

and  

020 ...... xxkk rNr 
 

020

1

1 1

2
......2 xxkkxe rNr

rN

m

m

mrN

ki r










  

The first transformation is just a 
2

 rotation of the rth bit.  

 10
2

1
0   

 10
2

1
1   

The second set just corresponds to a series of controlled one bit phase rotations. 

 
  


















rN

m

mrN

xk

rrNr

rN

m

m

mrN

ki
xekkxxkkxe

m
rmNrr

1

1

1

22

0020

1

1 1

2
1

1.........2
  

I.e., these are transformations which phase rotate the mrNx 1 bit depending on 

whether rk bit is one or zero.  

Thus given the transform up to r-1 bits, it requires a single 
2

 rotation of a single bit, 

and   N-r-1 controlled single-bit phase rotations, for a total of N-r operations. Thus the 

whole Fourier transformation requires    





1

0 21
N

r
NNrN operations (N, we 

recall is the number of bits in each of the numbers).  



Appendix 

 

U.H.B.C 152 

If we apply this Fourier transform to a state of the form 
x

x x  

we get for the Quantum Fourier Transform  

  















k k x

x

kxi

N

kxi

N
x

x kekeQFT  

2

2

2

2

1

2

1
 

The term in the brackets is just the discrete Fourier transform of x .  

Note again that the representation k  is the bit reversed of the representation of x. 

While one could do a bit reversal operation to get k into the same bit order as x , 

there is no point.  

  



















1

0

12

0

12

0

)12(2

12

)2(2

2

2
N

n

N

n

N

k

Nkxi

n
N

knxi

n
N

kin

n eaeaea 

 
  















1

0

12

0

12

0

2
22)

2
(22

N

n

N

n

N

k

Nink

n
N

knNink

n
N

kin

n eaeeaea

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APPENDIX C 

C-1- Grover MATLAB program commands definition and description 

a- Round: Round to nearest integer  

Syntax: Y = round(X) 

Description: Y = round(X) rounds the elements of X to the nearest integers. For 

complex X, the imaginary and real parts are rounded independently. 

b- rand: Uniformly distributed pseudorandom numbers  

Syntax: 

Y = rand 

Y = rand(n) 

Y = rand(m,n) 

Y = rand([m n]) 

Y = rand(m,n,p,...) 

Y = rand([m n p...]) 

Y = rand(size(A)) 

rand(method,s) 

s = rand(method) 

Description: Y = rand returns a pseudorandom, scalar value drawn from a uniform 

distribution on the unit interval.  

Y = rand(n) returns an n-by-n matrix of values derived as described above.  

Y = rand(m,n) or Y = rand([m n]) returns an m-by-n matrix of the same.  

Y = rand(m,n,p,...) or Y = rand([m n p...]) generates an m-by-n-by-p-by-... array of the 

same.  

Y = rand(size(A)) returns an array that is the same size as A.  

rand(method,s) causes rand to use the generator determined by method, and initializes 

the state of that generator using the value of s.  

The value of s is dependent upon which method is selected. If method is set to 'state' or 

'twister', then s must be either a scalar integer value from 0 to 2^32-1 or the output of 

rand(method). If method is set to 'seed', then s must be either a scalar integer value 

from 0 to 2^31-2 or the output of rand(method). 

c- mod : Modulus after division  
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Syntax : M = mod(X,Y) 

Description: M = mod(X,Y) if Y ~= 0, returns X - n.*Y where n = floor(X./Y). If Y is 

not an integer and the quotient X./Y is within roundoff error of an integer, then n is 

that integer. The inputs X and Y must be real arrays of the same size, or real scalars.  

The following are true by convention: mod(X,0) is X mod(X,X) is 0 mod(X,Y) for 

X~=Y and Y~=0 has the same sign as Y. 

Examples: 

mod(13,5) 

ans = 3 

d- eye : Identity matrix  

Syntax : 

Y  =  eye(n) 

Y  =  eye(m,n) 

Y  =  eye(size(A)) 

eye(m, n, classname) 

eye([m,n],classname) 

Description: 

Y = eye(n) returns the n-by-n identity matrix.  

Y = eye(m,n) or eye([m n]) returns an m-by-n matrix with 1's on the diagonal and 0's 

elsewhere.  

Y = eye(size(A)) returns an identity matrix the same size as A.  

eye(m, n, classname) or eye([m,n],classname) is an m-by-n matrix with 1's of class 

classname on the diagonal and zeros of class classname elsewhere. classname is a 

string specifying the data type of the output. classname can have the following values: 

'double', 'single', 'int8', 'uint8', 'int16', 'uint16', 'int32', 'uint32', 'int64', or 'uint64'.  

Example: x = eye(2,3,'int8'); 

Limitations: The identity matrix is not defined for higher-dimensional arrays. The 

assignment y = eye([2,3,4]) results in an error. 

e- ones: Create an array of all ones  

Syntax : 

Y = ones(n) 
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Y = ones(m,n) 

Y = ones([m n]) 

Y = ones(d1,d2,d3...) 

Y = ones([d1 d2 d3...]) 

Y = ones(size(A)) 

ones(m, n,...,classname) 

ones([m,n,...],classname) 

Description:  

Y = ones(n) returns an n-by-n matrix of 1s. An error message appears if n is not a 

scalar.  

Y = ones(m,n) or Y = ones([m n]) returns an m-by-n matrix of ones.  

Y = ones(d1,d2,d3...) or Y = ones([d1 d2 d3...]) returns an array of 1s with dimensions 

d1-by-d2-by-d3-by-....  

Y = ones(size(A)) returns an array of 1s that is the same size as A.  

ones(m, n,...,classname) or ones([m,n,...],classname) is an m-by-n-by-... array of ones 

of data type classname. classname is a string specifying the data type of the output. 

classname can have the following values: 'double', 'single', 'int8', 'uint8', 'int16', 

'uint16', 'int32', 'uint32', 'int64', or 'uint64'.  

Example: x = ones(2,3,'int8'); 

f- plot: Plot data series  

Syntax: 

plot(tsobj) 

hp = plot(tsobj) 

plot(tsobj, linefmt) 

hp = plot(tsobj, linefmt) 

plot(..., volumename, bar) 

hp = plot(..., volumename, bar) 

Description: 

plot(tsobj) plots the data series contained in the object tsobj. Each data series will be a 

line. plot automatically generates a legend as well as dates on the x-axis. Grid is turned 

on by default. plot uses the default color order as if plotting a matrix.  
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The plot command automatically creates subplots when multiple time series are 

encountered, and they differ greatly on their decimal scales. For example, subplots are 

generated if one time series data set is in the 10s and another's is in the 10,000s.  

hp = plot(tsobj) additionally returns the handle(s) to the object(s) inside the plot figure. 

If there are multiple lines in the plot, hp is a vector of multiple handles.  

plot(tsobj, linefmt) plots the data series in tsobj using the line format specified. For a 

list of possible line formats, see plot in the MATLAB documentation. The plot legend 

is not generated, but the dates on the x-axis and the plot grid are. The specified line 

format is applied to all data series; that is, all data series will have the same line type.  

hp = plot(tsobj, linefmt) plots the data series in tsobj using the format specified. The 

plot legend is not generated, but the dates on the x-axis and the plot grid are. The 

specified line format is applied to all data series, that is, all data series can have the 

same line type. If there are multiple lines in the plot, hp is a vector of multiple handles.  

plot(..., volumename, bar) additionally specifies which data series is the volume. The 

volume is plotted in a subplot below the other data series. If bar = 1, the volume is 

plotted as a bar chart. Otherwise, a line plot is used.  

hp = plot(..., volumename, bar) returns handles for each line. If bar = 1, the handle to 

the patch for the bars is also returned. 

g- Stem: Two-Dimensional Stem Plots 

A stem plot displays data as lines (stems) terminated with a marker symbol at each 

data value. In a 2-D graph, stems extend from the x-axis.  

The stem function displays two-dimensional discrete sequence data. For example, 

evaluating the function  with the values  

alpha = .02; beta = .5; t = 0:4:200; 

y = exp(-alpha*t).*cos(beta*t); 

yields a vector of discrete values for y at given values of t. A line plot shows the data 

points connected with a straight line.  

plot(t,y) 

A stem plot of the same function plots only discrete points on the curve.  

stem(t,y) 

Add axes labels to the x- and y-axis.  
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