REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

MEMOIRE

Présenté à

L'UNIVERSITE HASSIBA BEN BOUALI – CHLEF Faculté des Sciences et des Sciences de l'Ingénieur Département d'Hydraulique

pour l'obtention du diplôme de

MAGISTERE

Spécialité: Hydraulique **Option :** Aménagement hydraulique

Thème

Impact des Lâchers des Barrages Ghrib et Boukourdane sur la Recharge Artificielle de la Nappe Alluviale

Présenté par

M. ABAIDIA Sofiane

Soutenu publiquement le 26/06/2008 devant le Jury composé de:

S. A. HAMOUDI	Professeur	U. Chlef	Président
B. REMINI	Professeur	U. Blida	Promoteur
M. HABI	Maître de Conférences	U. Tlemcen	Examinateur
K. EZZI ANE	Maître de Conférences	U. Chlef	Examinateur
M. REMAOUN	Maître de Conférences	U. Chlef	Examinateur
S. NEDJAI	Chargé de Cours	U. Chlef	Examinateur

A cette douceur qui a toujours su cicatriser

mes peines et mes blessures et qui a toujours

su embellir mon existence : Maman !

A mes deux frères : Amine et I shak,

mes deux belles-sœurs Radéa et Kheïra

et ma petite nièce « Mordjane »

Remerciements

Avant d'aborder la liste officielle de mes encadrants, je voudrais tout d'abord remercier vivement deux personnes qui veillaient sur moi comme deux grands frères depuis le début de ce travail et dont aucun mot ne peut exprimer ma gratitude envers eux. Il s'agit du Dr. M. GHRICI, Maître de conférences à l'université de Chlef, qui malgré un emploi du temps souvent très chargé entre enseignement et laboratoire, il a su m'enseigner la rigueur scientifique et le métier de chercheur. Il a toujours été là pour m'aider et me porter soutien; et M. E. Van HOUTTE, Géologue à l'Intermunicipal Water Company of Veurne-Ambacht (I WVA), que le hasard a voulu que connaisse durant l'élaboration de ce travail et qui depuis n'a pas cessé de me fournir la documentation nécessaire et ses connaissances dans le domaine de la recharge artificielle. Cher Emmanuel, je ne pourrai jamais oublier tout ce que vous avez fait pour me voir réussir. Je garderai soigneusement tous vos messages encourageants et réconfortants qui arrivaient à temps quand j'en avais besoin.

Evidemment, je remercie aussi chaleureusement mon directeur de mémoire Dr. B. REMINI, Professeur à l'Université de Blida pour m'avoir plongé dans la recharge artificielle des nappes. Pendant toute la durée de ce mémoire, vous avez su m'encadrer tout en me laissant suffisamment de liberté pour que je développe mes propres idées, tout en étant attentif pour que je ne m'égare pas sur des pistes peu prometteuses.

J'adresse toute ma reconnaissance au Dr. S. A. HAMOUDI, Professeur à l'Université de Chlef pour m'avoir fait l'honneur de présider le membre de Jury.

Je tiens à remercier également, Dr. M. HABI Maître de conférences à l'Université de Tlemcen, les Drs. K. EZZIANE et M. REMAOUN, respectivement, Maître de conférences et Chargé de cours à l'Université de Chlef, et Dr. S. NEDJAI Chargé de cours à l'université de Chlef qui ont accepté d'examiner et juger ce travail tout en l'enrichissant avec leurs précieuses remarques et directives.

Je remercie également Mesdemoiselles H. MAAMAR et H. MESSELMI, ingénieurs à l'A.N.R.H Blida ainsi que M. BENMESSAOUD A., pour leur aide dans la collecte des données et pour m'avoir écouté et partagé leurs connaissances ainsi que pour leurs conseils avisés.

Mes remerciements vont aussi au Dr. M. MEDDI, Professeur au Centre Universitaire de Khémis-Miliana ainsi que toute l'équipe du laboratoire «Eau-Roche-Plante», Messieurs M. MEHAI GUENE, A. SADEUK BELABBES et A. BOUSSOUFI ANE pour m'avoir toujours accueilli avec sympathie au sein de leur équipe, pour leur disponibilité et les échanges scientifiques que nous avons eus ensemble.

Je ne peux pas oublier toutes les personnes qui m'ont porté soutien et qui ont contribué à la collecte des informations et la documentation nécessaires pour la réalisation de ce travail. Je remercie chaleureusement: Dr. Ph. BAVEYE, Professeur associé à Cornell University. New York; Dr. H. BOUWER, chercheur à l'U.S Water Conservation Laboratory, Phoenix, Arizona; Dr. J. J. DONOVAN Professeur à West Virginia University; Mrs. M. AL-SIBAI et A. AL-DAROUBI, respectivement, Directeur du programme des ressources hydriques intégrées et Directeur de la gestion des ressources hydriques à l'ACSAD (the Arab Center for the Studies of Arid zones and Dry lands-Syrie); les Drs. C. MI CHEL et Ch. PERRI N, Chercheurs au Cemagref Anthony, France; DR. Ch. Frycklund, Consultante au bureau d'études SWECO-Suède et Mme B. AL-ZEI N, membre de la Division Land and Water de la FAO-I talie.

Une pieuse pensée va à l'âme du Dr. V. STANESCU, Chercheur au National Institute of Meteorology and Hydrology à Bucarest, Roumanie, décédé il y a quelques mois qui lui aussi n'a pas épargné aucun effort pour répondre à mes attentes.

Je remercie également tous mes amis et plus particulièrement K. HENNIA et A. HELAIMI pour toute leur aide durant ces années que nous avons passées ensemble à l'université sans oublier mon amie Françoise et ses parents ainsi que Hendro et sa femme Toëtie pour avoir toujours demandé après moi et m'avoir porté beaucoup de soutien moral.

Ce travail n'aurait pas vu le jour sans le soutien de ma famille et surtout ma maman qui a fait de moi ce que je suis, mes frères Amine et I shak et mes belles-sœurs Radéa et Kheïra, mes cousins Djamel Eddine, Okba et Samira qui m'ont soutenu de près pour aller jusqu'au bout de mes projets.

En bref, Merci à toute personne qui m'a supporté, dans les deux sens du terme!

Résumé

La réalisation d'un barrage sur un cours d'eau conjuguée à l'exploitation sans cesse de la nappe a pour conséquence un abaissement inquiétant du niveau piézométrique de la nappe. Pour palier à ce déséquilibre, la réalimentation artificielle de la nappe grâce à des campagnes de lâchers des eaux du barrage sous forme d'ondes de crues s'avère nécessaire. Cette technique permet d'équilibrer le bilan des flux et de modifier la qualité de l'eau de l'aquifère en compensant les prélèvements par des apports complémentaires artificiels.

Notre étude s'intéresse au cas des deux barrages de Ghrib et de Boukourdane. Le suivi de la piézométrie dans le temps et dans l'espace à l'aval des deux barrages peut nous donner des résultats appréciables de la montée de la nappe.

Mots-clés

Lâchers – Barrage Ghrib – Barrage Boukourdane – Recharge artificielle – Nappe alluviale – Perméabilité – Infiltration.

Abstract

The dam construction on the flowing water valley besides the continuously exploitation of the aquifer leading to drawdown of the piezometric level of the aquifer. For balancing the status, it is necessary to apply the artificial recharge of groundwater through the necessary dam waters. This technique allowed to balance the budget of flow and improve the quality of groundwater by supplements of surface water in place of the exerted groundwater.

This study interests for Ghrib and Boukourdane dams by watching and following the piezometric changing downward the dam giving the results or idea about the piezometric rising for aquifer.

Keywords

Floods – Ghrib dam – Boukourdane dam – Artificial recharge – Alluvial aquifer – Permeability – Infiltration.

ملخص

إن إنشاء سد على مجرى مائي بالإضافة إلى الاستغلال غير المنقطع للمكن المائي يؤدي إلى انخفاض هام للمستوى البيزومتري للمياه الجوفية. من أجل موازنة هذه الحالة، تعتبر التغذية الاصطناعية للمياه الجوفية عن طريق إطلاق مياه السد ضرورية. تسمح هذه التقنية بموازنة حوصلة الجريان و تحسين نوعية المياه الجوفية باستخلاف المياه المستخرجة بإضافات من المياه السطحية.

قمتم هذه الدراسة بحالتي سدي غريب و بوكردن. يمكن لمتابعة التغير البيزومتري أسفل السد إعطاء نتائج حول الصعود البيزومتري للمكن المائي.

مفتاح الكلمات

سد غریب – سد بو کردن – تغذیة اصطناعیة – مکمن مائی – نفاذیة – غیض.

Table des matières

PARTIE 1 Etude Bibliographique

Chapitre I: Introduction Générale

I.1. Introduction	02
I.2. Stratégies pour augmenter le stockage de l'eau	03
I.2.1. Stockage dans les barrages	03
I.2.2. Dessalement de l'eau de mer	04
I.2.3. Recyclage des eaux usées	05
I.2.4. Recharge artificielle des nappes	05
I.3. Objectif du travail	05
I.4. Plan du travail	06
Chapitre II: Recharge Artificielle des Nappes	
II.1. Introduction II.2. Le cycle de l'eau	08 08
II.3. Le stockage de l'eau souterraine dans le cycle de l'eau	09
II.4. Alimentation naturelle d'une nappe	10
II.4.1. Alimentation à partir d'un cours d'eau	13
II.4.2. Alimentation par infiltration des eaux de pluie	14
II.5. Recharge artificielle des nappes	14
II.6. Applications de l'alimentation artificielle	17
II.6.1. Modification de la qualité de l'eau	17
II.6.1.1. Régularisation thermique	17
II.6.1.2. Epuration	18
II.6.2. Restauration et protection contre des perturbations diverses	18
II.6.2.1. Perturbations créées par l'exploitation	18
II.6.2.2. Incidence des grands travaux	19
II.6.3. Accroissement de la ressource et optimisation du régime d'exploitation	19
II.7. Conditions générales d'utilisation de la recharge artificielle	20

II.7.1. Conditions hydrologiques	20
II.7.1.1. Débit	20
II.7.1.2. Qualités chimiques et bactériologiques	21
II.7.1.3. Turbidité	21
II.7.1.4. Température	21
II.7.2. Conditions hydrogéologiques et hydrodynamiques	21
II.7.2.1. Nature du terrain	21
II.7.2.2. Structure et limites	22
II.7.2.3. Epaisseur totale des réservoirs	22
II.7.3. Influence des paramètres hydrauliques	22
II.7.3.1. Perméabilité	23
II.7.3.2. Transmissivité	23
II.7.3.3. Coefficient d'emmagasinement et coefficient de remplissage	23
II.7.3.4.Diffusivité	24
II.7.3.5. Gradient hydraulique	25
II.7.3.6. Vitesse d'écoulement	25
II.7.4. Les unités hydrogéologiques favorables pour la recharge artificielle	26
II.8. Méthodes de recharge artificielle	27
II.8.1. Les méthodes d'infiltration de surface	28
II.8.2. Méthodes d'infiltration de subsurface	36
II.8.3.Méthodes d'injection directe	38
II.9. Conclusion	41
Chapitre III: Epuration de l'Eau dans le Sol	
III.1. Introduction	43
III.2 Le réacteur Sol – Zone Non Saturée – Nappe	43
III.3. Paramètres de l'autoépuration naturelle des sols	45
III.3.1. Paramètres physiques	45
III.3.2. Paramètres chimiques	46
III.3.3.Paramètres biologiques	46
III.3.4. Paramètres hydrodynamiques	46
III.4. Evaluation du pouvoir épurateur des sols	46

III.5. La filtration dans le sol et l'aquifère	49
III.5.1. Rétention des matières en suspension	49
III.5.2. Rétention des germes pathogènes	51
III.5.3. Elimination du carbone organique	53
III.5.4. Rétention des éléments « traces »	53
III.5.5. Rétention des sels solubles	54
III.5.6. Rétention de l'azote	54
III.5.7. Rétention du phosphore	55
III.6. Conclusion	55
Chapitre IV: Colmatage des Dispositifs de la Recharge Artificielle	
IV.1. Introduction	57
IV.2. Colmatage des bassins d'infiltration	57
IV.2.1. Origines du colmatage	57
IV.2.1.1. Colmatage par les matières en suspension	58
IV.2.1.2. Colmatage biologique	60
IV.2.1.3. Colmatage chimique	62
IV.2.1.4. Action des algues	62
IV.2.2. Prévention du colmatage	63
IV.2.2.1. Décantation et filtration de l'eau de recharge	63
IV.2.2.2. Addition de substances chimiques	64
IV.2.2.3. Couverture végétale ou artificielle au fond du bassin	65
IV.2.2.4. Gestion des bassins	65
IV.2.3. Traitement du colmatage	68
IV.3. Le colmatage des dispositifs d'injection	68
IV.3.1. Origines du colmatage	69
IV.3.1.1. Colmatage mécanique	69
IV.3.1.2. Colmatage par les matières en suspension	69
IV.3.1.3. Colmatage par les gaz dissous	72
IV.3.1.4. Colmatage chimique	73
IV.3.1.5. Colmatage biologique	75
IV.3.2. Prévention du colmatage	77

IV.3.2.1. Identification des causes du colmatage	77
IV.3.2.2. Les crépines et le massif filtrant	78
IV.3.2.3. Nature des eaux et traitements préalables	79
IV.3.2.4. Gestion des forages d'injection	81
IV.3.3. Prédiction du colmatage	82
IV.3.4. Traitement du colmatage	83
IV.3.4.1. Traitements mécaniques	84
IV.3.4.2. Traitements chimiques	85
IV.4. Conclusion	87
Chapitre V: Approche Economique de la Recharge Artificielle des Nappes	
V.1. Introduction	89
V.2. Comparaison de la recharge artificielle avec différents procédés de gestion de	
l'eau	
V.2.1. Comparaison stockage souterrain – stockage superficiel	89
V.2.2. Comparaison avec une unité de traitement des eaux superficielles	90
V.2.3. Comparaison avec une adduction d'eau	91
V.3. Rentabilité d'une alimentation artificielle	91
V.3.1. Coût de l'investissement et de l'entretien	91
V.3.1.1 Acquisition des terrains	92
V.3.1.2. Coût des travaux de réalisation	92
V.3.1.3. Fonctionnement et entretien	93
V.3.1.4. Coût global d'une opération d'alimentation artificielle	95
V.3.2. Revenus apportés par une alimentation artificielle	96
V.4. Conclusion	97
Chapitre VI: Alimentation Artificielle des Nappes et le Problème de l'Eau	
dans Différents pays	
VI.1. Introduction	99
VI.2. L'alimentation artificielle dans les Territoires-Occupés	99
VI.3. L'alimentation artificielle en Californie	101

VI.4. L'alimentation artificielle en Inde	103
VI.5. L'alimentation artificielle en Europe	104
VI.5.1. France	104
VI.5.2. Allemagne	104
VI.5.3. Suisse	105
VI.5.4. Suède	105
VI.5.5. Pays-Bas	105
VI.5.6. Grande-Bretagne	106
VI.5.7. Belgique	106
VI.5.8. Danemark	106
VI.5.9. Espagne	107
VI.6. L'alimentation artificielle dans le monde Arabe	107
VI.7. Conclusion	111
PARTIE 2	
Etude Expérimentale	
Chapitre VII: Cas des Lâchers du Barrage Ghrib	
VII.1. Introduction	113
VII.2. Situation géographique	
VII.3. Réseau hydrographique	113
VII.5. Reseau nydrograpinque	113 114
VII.4. Couvert végétal	_
, , ,	114
VII.4. Couvert végétal	114 114
VII.4. Couvert végétal VII.5. Caractéristiques hydroclimatologiques	114 114 114
VII.4. Couvert végétal VII.5. Caractéristiques hydroclimatologiques VII.5.1. Etude des précipitations moyennes annuelles	114 114 114 114
VII.4. Couvert végétal VII.5. Caractéristiques hydroclimatologiques VII.5.1. Etude des précipitations moyennes annuelles VII.5.2. Etude des températures	114 114 114 114 115
VII.4. Couvert végétal VII.5. Caractéristiques hydroclimatologiques VII.5.1. Etude des précipitations moyennes annuelles VII.5.2. Etude des températures VII.6. Etude géologique et géophysique	114 114 114 114 115 116
VII.4. Couvert végétal VII.5. Caractéristiques hydroclimatologiques VII.5.1. Etude des précipitations moyennes annuelles VII.5.2. Etude des températures VII.6. Etude géologique et géophysique VII.6.1. Contexte géologique	114 114 114 115 116
VII.4. Couvert végétal VII.5. Caractéristiques hydroclimatologiques VII.5.1. Etude des précipitations moyennes annuelles VII.5.2. Etude des températures VII.6. Etude géologique et géophysique VII.6.1. Contexte géologique VII.6.2. Stratigraphie	114 114 114 115 116 116
VII.4. Couvert végétal VII.5. Caractéristiques hydroclimatologiques VII.5.1. Etude des précipitations moyennes annuelles VII.5.2. Etude des températures VII.6. Etude géologique et géophysique VII.6.1. Contexte géologique VII.6.2. Stratigraphie VII.6.3. Cadre structural	114 114 114 115 116 116 118
VII.4. Couvert végétal VII.5. Caractéristiques hydroclimatologiques VII.5.1. Etude des précipitations moyennes annuelles VII.5.2. Etude des températures VII.6. Etude géologique et géophysique VII.6.1. Contexte géologique VII.6.2. Stratigraphie VII.6.3. Cadre structural VII.6.3.1. La dépression du Haut-Chéliff	114 114 114 115 116 116 118 121

VII.7.1. Présentation du réseau de mesure	123
VII.7.2. Suivi de la piézométrie	125
VII.7.3. Variation spatiotemporelle du niveau piézométrique de la nappe du Haut Chéliff	136
	140
VII.7.4. Variation de la réserve souterraine de la nappe du Haut-Chéliff VII.8. Conclusion	140 143
VII.0. Conclusion	173
Chapitre VIII: Cas des Lâchers du Barrage Boukourdane	
VIII.1. Introduction	145
VIII.2. Situation de la zone d'étude	145
VIII.3. Caractéristiques géomorphologiques du bassin versant de Oued el Hachem	146
VIII.4. Couvert végétal	148
VIII.5. Hydrographie	149
VIII.6. Climatologie	151
VIII.6.1. Précipitations	151
VIII.6.2. Température	154
VIII.6.3. Vents	155
VIII.6.4. Insolation	155
VIII.6.5. Humidité relative	156
VIII.7. Géologie	156
VIII.8. Lithostratigraphie	160
VIII.8.1. Les formations primaires	161
VIII.8.2. Les formations secondaires	161
VIII.8.2.1. Trias	161
VIII.8.2.2. Jurassique	161
VIII.8.2.3. Crétacé	162
VIII.8.3. Les formations tertiaires	163
VIII.8.3.1. Eocène	163
VIII.8.3.2. Oligocène	163
VIII.8.3.3. Miocène	163
VIII.8.3.4. Pliocène	164
VIII.8.3.5. Quaternaire	164
VIII.9. Pédologie	165

VIII.10. Ressources hydriques	
VIII.10.1. Ressources superficielles	166
VIII.10.2. Ressources souterraines	167
VIII.11. Etat de la surface piézométrique de la nappe alluviale de Oued el Hachem	
suite à la réalisation du barrage de Boukourdane	169
VIII.12. Fluctuation de l'état piézométrique de la nappe de Oued el Hachem	170
VIII.12.1. Présentation du réseau de mesure	170
VIII.12.2. Suivi de la piézométrie	172
VIII.12.3. Evolution spatiotemporelle de la nappe de Oued el Hachem	187
VIII.12.4. Variation de la réserve souterraine de la nappe de Oued el Hachem	191
VIII.13. Bilan par différences volumétriques des lâchers et par jaugeage différentiel	193
VIII.14. Conclusion	196
Conclusion générale et recommandations	198
Références bibliographiques	200
Annexes	207

Liste des figures

Figure 1.1: Coefficient de disponibilité en eau par rapport à la population	02
Figure 2.1 : Schéma simplifié du cycle de l'eau	08
Figure 2.2: Zone de passage de l'eau dans le sous-sol.	09
Figure 2.3: Mécanismes de recharge naturelle	11
Figure 2.4: Schéma simplifié de différents types de recharge des nappes	15
Figure 2.5: Principe de la recharge induite	16
Figure 2.6: Exemples de méthodes d'infiltration de surface	28
Figure 2.7: Types de bassins d'infiltration	29
Figure 2.8: Disposition des bassins d'infiltration	30
Figure 2.9: Recharge depuis wadi Ahin, Sultanat d'Oman	31
Figure 2.10: Inondation à partir du barrage Al Khoud (Sultanat d'Oman) pour	32
Figure 2.11: Principe de la récupération des eaux météoriques	32
Figure 2.12: types de barrages destinés pour la recharge des nappes	33
Figure 2.13: Schéma d'un dispositif de barrages de rétention superposés	34
Figure 2.14: Barrage de sable	35
Figure 2.15: Schéma d'un barrage de sable	35
Figure 2.16: Disposition des tranchées d'infiltration	35
Figure 2.17: Exemple de différents types de recharge souterraine	36
Figure 2.18: Fosse d'infiltration	37
Figure 2.19: Réalisation d'un barrage d'inferoflux	38
Figure 2.20: Schéma d'un barrage d'inferoflux	38
Figure 2.21: Exemples de méthodes d'injection directe	39
Figure 2.22: Schéma d'un dispositif d'ASR	40
Figure 2.23: Schéma simplifié des techniques de l'ASR et de l'ASTR	40
Figure 3.1: Présentation schématique du rôle épurateur du sol	44
Figure 3.2: Variation du taux d'oxygène dans l'eau au cours du processus de filtration lente	50
Figure 4.1: Mécanismes de colmatage par les particules solides	58
Figure 4.2: Infiltration sur colonnes de sable. Evolution du colmatage pour différentes charges en matières en suspension	59
Figure 4.3: Variation de la conductivité hydraulique en fonction du nombre de bactéries	61
Figure 4.4: Différentes formes de colmatage bactériologique	61

Figure 4.5: Evolution du taux d'infiltration avec le temps	66
Figure 4.6: Divers scénarios de gestion des bassins d'infiltration, exemple du site	
de Flins-Aubergenville	67
Figure 4.7: Remontée de l'eau dans un forage d'injection suite à différents stades	
de colmatage	70
Figure 4.8: Colmatage d'un pore par une bulle d'air	72
Figure 4.9: Remontée du niveau de l'eau avec le temps en fonction de différents	
types de colmatage Figure 4.10: Remontée de l'eau dans un ouvrage d'injection en fonction du colmatage	77
Figure 4.11: Récupération du débit d'injection d'un forage après redéveloppement	83
rigure 4.11. Recuperation du debit à injection à un forage après redeveloppement	84
Figure 5.1: Analyse du coût de La recharge artificielle de la nappe de Croissy-sur-Seine	94
Figure 6.1: Carte de l'alimentation artificielle dans les territoires-occupés	99
Figure 6.2: Carte schématique du « California Water Plan »	102
Figure 6.3: Plan de la réalimentation artificielle de la nappe de Aïn Chabro	108
Figure 7.1: Situation du bassin versant du Haut Chéliff	113
Figure 7.2: Précipitations moyennes annuelles à la station de Ghrib-Chéliff (1968 – 2001)	115
Figure 7.3: Températures moyennes mensuelles et annuelles à la station d'El Khémis	116
Figure 7.4: Cadre géologique du Haut-Chéliff	117
Figure 7.5: Log stratigraphique de la région du Haut-Chéliff	118
Figure 7.6: Carte structurale du Tell Centro-Occidental	121
Figure 7.7: Réseau piézométrique du Haut-Chéliff	125
Figure 7.8: Carte piézométrique de la nappe du Haut-Chéliff (hautes eaux 2002)	132
Figure 7.9: Carte piézométrique de la nappe du Haut-Chéliff (basses eaux 2002)	132
Figure 7.10: Carte piézométrique de la nappe du Haut-Chéliff (hautes eaux 2003)	133
Figure 7.11: Carte piézométrique de la nappe du Haut-Chéliff (basses eaux 2003)	133
Figure 7.12: Carte piézométrique de la nappe du Haut-Chéliff (hautes eaux 2004)	134
Figure 7.13: Carte piézométrique de la nappe du Haut-Chéliff (basses eaux 2004)	134
Figure 7.14: Axes considérés pour suivre l'évolution de la piézométrie de la nappe	134
du Haut-Chéliff	137
Figure 7.15: Evolution spatiotemporelle de la nappe du Haut-Chéliff à la rive droite de l'Oued	138

Figure 7.16: Evolution spatiotemporelle de la nappe du Haut-Chéliff à la rive gauche	
de l'Oued	138
Figure 7.17: Variation de la réserve de la nappe du Haut-Chéliff	142
Figure 8.1 : Carte de situation du bassin versant de Oued El Hachem	146
Figure 8.2: Carte d'occupation des sols	148
Figure 8.3: Chevelu hydrographique de l'Oued El Hachem	150
Figure 8.4: Précipitations mensuelles aux différentes stations	152
Figure 8.5: Extrait de la carte pluviométrique de l'Algérie du Nord	153
Figure 8.6: Variation de la température moyenne mensuelle à la station	
de Boukourdane pour l'année 2004 – 2005	154
Figure 8.7 : Carte géologique de Oued El Hachem	157
Figure 8.8: Coupes géologiques dans la vallée de l'Oued El Hachem	159
Figure 8.9: Log stratigraphique des formations de la vallée de Oued el Hachem	
et leurs caractéristiques hydrogéologiques	160
Figure 8.10: Vue sur la digue et le lac du barrage de Boukourdane	166
Figure 8.11: Courbe Hauteur – Volume – Surface du Barrage Boukourdane	167
Figure 8.12: Situation de la nappe de l'oued el Hachem	168
Figure 8.13: Carte du réseau piézométrique de la nappe alluviale de oued el Hachem	171
Figure 8.14: Carte piézométrique de la campagne 1998	177
Figure 8.15: Carte piézométrique de la nappe de Oued El Hachem (hautes eaux 2003)	178
Figure 8.16: Carte piézométrique de la nappe de Oued El Hachem (basses eaux 2003)	179
Figure 8.17: Carte piézométrique de la nappe de Oued El Hachem (hautes eaux 2004)	180
Figure 8.18: Carte piézométrique de la nappe de Oued El Hachem (basses eaux 2004)	181
Figure 8.19: Carte piézométrique de la nappe de Oued El Hachem (hautes eaux 2005)	182
Figure 8.20: Carte piézométrique de la nappe de Oued El Hachem (basses eaux 2005)	183
Figure 8.21: Carte piézométrique de la nappe de Oued El Hachem (hautes eaux 2006)	184
Figure 8.22: Carte piézométrique de la nappe de Oued El Hachem (basses eaux 2006)	185
Figure 8.23: Axes considérés pour le suivi de l'évolution de la piézométrie de la nappe	
de Oued el Hachem Figure 8.24: Evolution spatiotemporelle de la nappe de Oued el Hachem à la rive droite	187
de l'oued	189

Figure 8.25: Evolution spatiotemporelle de la nappe de Oued el Hachem à la rive gauche	
de l'oued	189
Figure 8.26: Variation de la réserve de la nappe de Oued el Hachem pour les différentes	
périodes étudiées	192

Liste des tableaux

Tableau 3.1: Pouvoir épurateur du sol dans la couverture (zone non saturée)	48
Tableau 3.2: Pouvoir épurateur du sol dans l'aquifère (zone saturée)	48
Tableau 3.3: Pouvoir épurateur des aquifères de fractures	49
Tableau 3.4: Facteurs influençant la mobilité et l'élimination des virus dans l'eau souterraine	52
Tableau 4.1: Influence du prétraitement de l'eau sur l'entretien des bassins d'infiltration	64
Tableau 4.2: Estimation de la fréquence des nettoyages en fonction du choix du traitement	
des eaux	82
Tableau 5.1: Investissement en anciens francs français du m³infiltré ou injecté	95
Tableau 5.2: Coût moyen en anciens francs français des installations en fonction	
du volume traité et de l'existence d'un prétraitement des eaux	95
Tableau 5.3: Bilan coûts-avantages d'une opération d'alimentation artificielle en millions FF	96
Tableau 6.1: Abondance de la ressource en eau dans quelques pays arabes	108
Tableau 7.1: Caractéristiques des stations pluviométriques	114
Tableau 7.2: Températures moyennes mensuelles et annuelles à la station	
d'El Khémis (1987-2002)	116
Tableau 7.3: Caractéristiques du réseau de mesure du bassin versant du haut Chéliff	124
Tableau 7.4: Levé piézométrique des hautes eaux 2002	126
Tableau 7.5: Levé piézométrique des basses eaux 2002	127
Tableau 7.6: Levé piézométrique des hautes eaux 2003	128
Tableau 7.7: Levé piézométrique des basses eaux 2003	129
Tableau 7.8: Levé piézométrique des hautes eaux 2004	130
Tableau 7.9: Levé piézométrique des basses eaux 2004	131
Tableau 7.10: Points considérés pour l'axe de la rive droite	137
Tableau 7.11: Points considérés pour l'axe de la rive gauche	137
Tableau 7.12: Calcul de la réserve souterraine de la nappe du haut Chéliff	141
Tableau 8.1: Les caractéristiques physiographiques du bassin versant de l'oued El Hachem	147
Tableau 8.2: Nomenclature et situation des stations utilisées	151
Tableau 8.3: Pluviométrie annuelle pour la période 2003-2004 dans le B.V de l'Oued Fl Hachem	152

Tableau 8.4: Températures moyennes mensuelles à la station de Boukourdane		
pour l'année 2004 - 2005	154	
Tableau 8.5: Vitesse moyenne mensuelle des vents, station de Boukourdane (série de 10ans)	155	
Tableau 8.6: Insolation moyenne mensuelle	155	
Tableau 8.7: Humidité relative moyenne mensuelle de la région	156	
Tableau 8.8: <i>Réseau de la nappe alluviale de Oued El Hachem</i>	170	
Tableau 8.9: <i>Campagne piézométrique de l'année 1998</i>	172	
Tableau 8.10: Levé piézométrique des hautes eaux de l'année 2003	172	
Tableau 8.11: Levé piézométrique des basses eaux de l'année 2003	173	
Tableau 8.12: Levé piézométrique des hautes eaux de l'année 2004	173	
Tableau 8.13: Levé piézométrique des basses eaux de l'année 2004	174	
Tableau 8.14: Levé piézométrique des hautes eaux de l'année 2005	174	
Tableau 8.15: Levé piézométrique des basses eaux de l'année 2005	175	
Tableau 8.16: Levé piézométrique des hautes eaux de l'année 2006	175	
Tableau 8.17: Levé piézométrique des basses eaux de l'année 2006	176	
Tableau 8.18: Distance et piézométrie des points de l'axe de la rive droite	188	
Tableau 8.19: Distance et piézométrie des points de l'axe de la rive gauche	188	
Tableau 8.20: Volume de la réserve pour les différentes périodes étudiées	191	
Tableau 8.21: Résultats des jaugeages différentiels au pied du barrage et à la station		
de Bordj Ghobrini (année 1998)	193	
Tableau 8.22: Résultats des jaugeages différentiels au pied du barrage et à la station		
de Bordj Ghobrini (année 1999)	194	