| Titre : |
Quantum Plasmadynamics : Magnetized Plasmas |
| Type de document : |
texte imprimé |
| Auteurs : |
Melrose, Donald |
| Editeur : |
Springer |
| Année de publication : |
2013 |
| Collection : |
Lecture Notes in Physics; 854 |
| Importance : |
490 p |
| Présentation : |
couv. ill. |
| Format : |
15,5 x 23,5 cm |
| ISBN/ISSN/EAN : |
978-1-4614-4044-4 |
| Note générale : |
Index |
| Langues : |
Anglais (eng) |
| Mots-clés : |
Quantum Plasmadynamics |
| Index. décimale : |
530.44 MEL |
| Résumé : |
Quantum Plasmadynamics is a synthesis of the kinetic theory of plasmas and quantum electrodynamics (QED). In this volume, the approach applied to unmagnetized plasmas in volume 1 is generalized to magnetized plasmas. First, a covariant version of nonquantum kinetic theory is formulated for single-particle (emission and scattering) processes and the collective-medium response. The relativistic quantum treatment is based on solutions of Dirac's equation for an electron in a magnetostatic field, and single-particle processes are treated using a magnetized version of QED. The response of an electron gas is derived by generalizing the derivation of the response of the magnetized vacuum. |
Quantum Plasmadynamics : Magnetized Plasmas [texte imprimé] / Melrose, Donald . - [S.l.] : Springer, 2013 . - 490 p : couv. ill. ; 15,5 x 23,5 cm. - ( Lecture Notes in Physics; 854) . ISBN : 978-1-4614-4044-4 Index Langues : Anglais ( eng)
| Mots-clés : |
Quantum Plasmadynamics |
| Index. décimale : |
530.44 MEL |
| Résumé : |
Quantum Plasmadynamics is a synthesis of the kinetic theory of plasmas and quantum electrodynamics (QED). In this volume, the approach applied to unmagnetized plasmas in volume 1 is generalized to magnetized plasmas. First, a covariant version of nonquantum kinetic theory is formulated for single-particle (emission and scattering) processes and the collective-medium response. The relativistic quantum treatment is based on solutions of Dirac's equation for an electron in a magnetostatic field, and single-particle processes are treated using a magnetized version of QED. The response of an electron gas is derived by generalizing the derivation of the response of the magnetized vacuum. |
|  |