Titre : | Histoires hédonistes de groupes et de géométries. Tome premier | Type de document : | texte imprimé | Auteurs : | Caldero, Philippe ; Germoni, Jérôme | Editeur : | Paris : Calvage & Mounet | Année de publication : | 2013 | Collection : | Mathématiques en devenir | Importance : | 1 vol. (XXI-385 p.) | Présentation : | ill | Format : | 24 cm | ISBN/ISSN/EAN : | 978-2-916352-31-2 | Prix : | 33 EUR | Note générale : | Bibliogr. et webliogr. p. 377-379. Index | Langues : | Français (fre) | Mots-clés : | Algèbres de groupes Algèbre linéaire Géométrie algébrique | Index. décimale : | 516.3 CAL | Résumé : | Le présent ouvrage est avant tout une oeuvre de bonheur et une invitation manifeste aux agréments mathématiques. Géométrie et groupes se donnent la main dans une valse nouvelle, aux sonorités du Programme d'Erlangen et aux modulations de la topologie et de la combinatoire. Philippe Caldero et Jérôme Germoni nous proposent d'abord de revisiter les programmes de la licence jusqu'à l'agrégation à l'aune des actions de groupes, qui offrent un principe unificateur exceptionnel.
Ces actions sont enrichies de structures variées telles la topologie ou la géométrie différentielle. A l'aide d'un nombre volontairement réduit d'outils théoriques, un plan d'étude d'une action (par la description des orbites, d'invariants, de formes normales et de l'adhérence des orbites) est mené de façon systématique dans des situations nombreuses et variées, faisant un pont entre certaines, quelque peu familières (théorème du rang), et d'autres plus sophistiquées (variétés de Schubert).
La combinatoire apparaît aussi comme une version discrète de la géométrie sur les corps finis. Elle donne des applications aussi spectaculaires qu'inattendues (formule du triple produit de Jacobi comme "trace" de la théorie des matrices échelonnées, loi de réciprocité quadratique résultant de la géométrie des quadriques). Deux auteurs, deux collègues, deux amis nous offrent là le fruit d'une collaboration heureuse, un fruit licite conçu dans le plaisir, une oeuvre d'architectes, de poètes et surtout de brillants mathématiciens.
Un regard nouveau et unificateur sur des thèmes classiques, particulièrement adapté à la synthèse que demande l'agrégation, avec en prime quelques perles inédites, du moins à ce niveau d'enseignement. Limitant les généralités au strict minimum, le texte offre sur deux volumes une multitude d'exemples explicites, établissant un pont entre l'algèbre linéaire, la géométrie élémentaire et des théories géométriques plus avancées. |
Histoires hédonistes de groupes et de géométries. Tome premier [texte imprimé] / Caldero, Philippe ; Germoni, Jérôme . - [S.l.] : Paris : Calvage & Mounet, 2013 . - 1 vol. (XXI-385 p.) : ill ; 24 cm. - ( Mathématiques en devenir) . ISBN : 978-2-916352-31-2 : 33 EUR Bibliogr. et webliogr. p. 377-379. Index Langues : Français ( fre) Mots-clés : | Algèbres de groupes Algèbre linéaire Géométrie algébrique | Index. décimale : | 516.3 CAL | Résumé : | Le présent ouvrage est avant tout une oeuvre de bonheur et une invitation manifeste aux agréments mathématiques. Géométrie et groupes se donnent la main dans une valse nouvelle, aux sonorités du Programme d'Erlangen et aux modulations de la topologie et de la combinatoire. Philippe Caldero et Jérôme Germoni nous proposent d'abord de revisiter les programmes de la licence jusqu'à l'agrégation à l'aune des actions de groupes, qui offrent un principe unificateur exceptionnel.
Ces actions sont enrichies de structures variées telles la topologie ou la géométrie différentielle. A l'aide d'un nombre volontairement réduit d'outils théoriques, un plan d'étude d'une action (par la description des orbites, d'invariants, de formes normales et de l'adhérence des orbites) est mené de façon systématique dans des situations nombreuses et variées, faisant un pont entre certaines, quelque peu familières (théorème du rang), et d'autres plus sophistiquées (variétés de Schubert).
La combinatoire apparaît aussi comme une version discrète de la géométrie sur les corps finis. Elle donne des applications aussi spectaculaires qu'inattendues (formule du triple produit de Jacobi comme "trace" de la théorie des matrices échelonnées, loi de réciprocité quadratique résultant de la géométrie des quadriques). Deux auteurs, deux collègues, deux amis nous offrent là le fruit d'une collaboration heureuse, un fruit licite conçu dans le plaisir, une oeuvre d'architectes, de poètes et surtout de brillants mathématiciens.
Un regard nouveau et unificateur sur des thèmes classiques, particulièrement adapté à la synthèse que demande l'agrégation, avec en prime quelques perles inédites, du moins à ce niveau d'enseignement. Limitant les généralités au strict minimum, le texte offre sur deux volumes une multitude d'exemples explicites, établissant un pont entre l'algèbre linéaire, la géométrie élémentaire et des théories géométriques plus avancées. |
| |