A partir de cette page vous pouvez :
Retourner au premier écran avec les catégories... |
Détail de l'indexation
512.55 KOS
512 Algèbre
512 ALG
512 COT
512 MEU
512 WIL
512.007 6
512.009 PLU
512.02 BAB
512.02 ESC
512.076 SAI
512.076 WEI
512.2
512.2 COR
512.2076
512.4 BER
512.4 MON
512.44 LOM
512.5 BLA
512.5 COT
512.5 ETI
512.5 GRI
512.5 LAY
512.507 6
512.7
512.7 COL
512.7 MOR
512.7 RIT
512.7 SEG
512.786 HAZ
512.9 COU
512.9 LUC
5120076
512 ALG
512 COT
512 MEU
512 WIL
512.007 6
512.009 PLU
512.02 BAB
512.02 ESC
512.076 SAI
512.076 WEI
512.2
512.2 COR
512.2076
512.4 BER
512.4 MON
512.44 LOM
512.5 BLA
512.5 COT
512.5 ETI
512.5 GRI
512.5 LAY
512.507 6
512.7
512.7 COL
512.7 MOR
512.7 RIT
512.7 SEG
512.786 HAZ
512.9 COU
512.9 LUC
5120076
Ouvrages de la bibliothèque en indexation 512.55 KOS
Affiner la rechercheGroupes et symétries / Yvette Kosmann-Schwarzbach
Titre : Groupes et symétries : Groupes finis, groupes et algèbres de lie, représentations Type de document : texte imprimé Auteurs : Yvette Kosmann-Schwarzbach Mention d'édition : 2ème édition Editeur : Les éditions de l'Ecole polytechnique Année de publication : 2011 Importance : 215p Présentation : couv.ill Format : 17*24cm ISBN/ISSN/EAN : Yvette Kosmann-Schwarzbach Note générale : Index; Bibliogr.p(209-211) Langues : Français (fre) Mots-clés : symétries Index. décimale : 512.55 KOS Résumé : La théorie des représentations de groupes, utilisant algèbre, géométrie et analyse, possède de multiples applications aux sciences physiques, en cristallographie, chimie, physique atomique et subatomique, ainsi que dans les théories de champ.
Ce livre est une introduction à cette théorie, à l'usage des étudiants de mathématiques et de physique. Il s'adresse à des lecteurs ayant les connaissances d'algèbre linéaire du premier cycle universitaire. Des exercices pour chaque chapitre et des problèmes corrigés complètent le cours.
L'objet de ce livre est de donner une première vue d'ensemble sur les groupes de symétries et leurs représentations.
On y trouvera l'étude, à l'aide de la théorie des caractères, des représentations des groupes finis, dont les résultats principaux sont ensuite étendus aux groupes compacts en utilisant l'intégrale de Haar.
Dans la suite du cours, la notion d'algèbre de Lie est introduite, celle de groupe de Lie est étudiée en se limitant au cas des groupes de Lie linéaires, et les propriétés essentielles liant groupes et algèbres de Lie sont exposées.
Les exemples fondamentaux pour la physique quantique, le groupe des rotations et le groupe spécial unitaire en dimension 2, sont étudiés en détails, leurs représentations irréductibles sont déterminées, et un chapitre traite des harmoniques sphériques.
Enfin, on aborde sur des exemples l'étude des représentations du groupe spécial unitaire en dimension 3, introduisant les notions de racines et de poids, et l'on montre que la théorie des quarks apparaît comme conséquence des propriétés mathématiques du groupe de symétries.Note de contenu : Généralités sur les groupes
Représentations des groupes finis
Représentations des groupes compacts
Groupes et algèbres de Lie
Les groupes de Lie SU(2) et SO(3)
Les représentations de SU(2) et SO(3)
Les harmoniques sphériques
Les représentations de SU(3) et les quarks
Problèmes corrigésGroupes et symétries : Groupes finis, groupes et algèbres de lie, représentations [texte imprimé] / Yvette Kosmann-Schwarzbach . - 2ème édition . - [S.l.] : Les éditions de l'Ecole polytechnique, 2011 . - 215p : couv.ill ; 17*24cm.
ISSN : Yvette Kosmann-Schwarzbach
Index; Bibliogr.p(209-211)
Langues : Français (fre)
Mots-clés : symétries Index. décimale : 512.55 KOS Résumé : La théorie des représentations de groupes, utilisant algèbre, géométrie et analyse, possède de multiples applications aux sciences physiques, en cristallographie, chimie, physique atomique et subatomique, ainsi que dans les théories de champ.
Ce livre est une introduction à cette théorie, à l'usage des étudiants de mathématiques et de physique. Il s'adresse à des lecteurs ayant les connaissances d'algèbre linéaire du premier cycle universitaire. Des exercices pour chaque chapitre et des problèmes corrigés complètent le cours.
L'objet de ce livre est de donner une première vue d'ensemble sur les groupes de symétries et leurs représentations.
On y trouvera l'étude, à l'aide de la théorie des caractères, des représentations des groupes finis, dont les résultats principaux sont ensuite étendus aux groupes compacts en utilisant l'intégrale de Haar.
Dans la suite du cours, la notion d'algèbre de Lie est introduite, celle de groupe de Lie est étudiée en se limitant au cas des groupes de Lie linéaires, et les propriétés essentielles liant groupes et algèbres de Lie sont exposées.
Les exemples fondamentaux pour la physique quantique, le groupe des rotations et le groupe spécial unitaire en dimension 2, sont étudiés en détails, leurs représentations irréductibles sont déterminées, et un chapitre traite des harmoniques sphériques.
Enfin, on aborde sur des exemples l'étude des représentations du groupe spécial unitaire en dimension 3, introduisant les notions de racines et de poids, et l'on montre que la théorie des quarks apparaît comme conséquence des propriétés mathématiques du groupe de symétries.Note de contenu : Généralités sur les groupes
Représentations des groupes finis
Représentations des groupes compacts
Groupes et algèbres de Lie
Les groupes de Lie SU(2) et SO(3)
Les représentations de SU(2) et SO(3)
Les harmoniques sphériques
Les représentations de SU(3) et les quarks
Problèmes corrigésExemplaires
Code-barres Cote Support Localisation Section Disponibilité aucun exemplaire Groupes et symétries / Yvette Kosmann-Schwarzbach
Titre : Groupes et symétries : Groupes finis, groupes et algèbres de lie, représentations Type de document : texte imprimé Auteurs : Yvette Kosmann-Schwarzbach Mention d'édition : 2ème édition Editeur : Les éditions de l'Ecole polytechnique Année de publication : 2011 Importance : 215p Présentation : couv.ill Format : 17*24cm ISBN/ISSN/EAN : Yvette Kosmann-Schwarzbach Note générale : Index; Bibliogr.p(209-211) Langues : Français (fre) Mots-clés : symétries Index. décimale : 512.55 KOS Résumé : La théorie des représentations de groupes, utilisant algèbre, géométrie et analyse, possède de multiples applications aux sciences physiques, en cristallographie, chimie, physique atomique et subatomique, ainsi que dans les théories de champ.
Ce livre est une introduction à cette théorie, à l'usage des étudiants de mathématiques et de physique. Il s'adresse à des lecteurs ayant les connaissances d'algèbre linéaire du premier cycle universitaire. Des exercices pour chaque chapitre et des problèmes corrigés complètent le cours.
L'objet de ce livre est de donner une première vue d'ensemble sur les groupes de symétries et leurs représentations.
On y trouvera l'étude, à l'aide de la théorie des caractères, des représentations des groupes finis, dont les résultats principaux sont ensuite étendus aux groupes compacts en utilisant l'intégrale de Haar.
Dans la suite du cours, la notion d'algèbre de Lie est introduite, celle de groupe de Lie est étudiée en se limitant au cas des groupes de Lie linéaires, et les propriétés essentielles liant groupes et algèbres de Lie sont exposées.
Les exemples fondamentaux pour la physique quantique, le groupe des rotations et le groupe spécial unitaire en dimension 2, sont étudiés en détails, leurs représentations irréductibles sont déterminées, et un chapitre traite des harmoniques sphériques.
Enfin, on aborde sur des exemples l'étude des représentations du groupe spécial unitaire en dimension 3, introduisant les notions de racines et de poids, et l'on montre que la théorie des quarks apparaît comme conséquence des propriétés mathématiques du groupe de symétries.Note de contenu : Généralités sur les groupes
Représentations des groupes finis
Représentations des groupes compacts
Groupes et algèbres de Lie
Les groupes de Lie SU(2) et SO(3)
Les représentations de SU(2) et SO(3)
Les harmoniques sphériques
Les représentations de SU(3) et les quarks
Problèmes corrigésGroupes et symétries : Groupes finis, groupes et algèbres de lie, représentations [texte imprimé] / Yvette Kosmann-Schwarzbach . - 2ème édition . - [S.l.] : Les éditions de l'Ecole polytechnique, 2011 . - 215p : couv.ill ; 17*24cm.
ISSN : Yvette Kosmann-Schwarzbach
Index; Bibliogr.p(209-211)
Langues : Français (fre)
Mots-clés : symétries Index. décimale : 512.55 KOS Résumé : La théorie des représentations de groupes, utilisant algèbre, géométrie et analyse, possède de multiples applications aux sciences physiques, en cristallographie, chimie, physique atomique et subatomique, ainsi que dans les théories de champ.
Ce livre est une introduction à cette théorie, à l'usage des étudiants de mathématiques et de physique. Il s'adresse à des lecteurs ayant les connaissances d'algèbre linéaire du premier cycle universitaire. Des exercices pour chaque chapitre et des problèmes corrigés complètent le cours.
L'objet de ce livre est de donner une première vue d'ensemble sur les groupes de symétries et leurs représentations.
On y trouvera l'étude, à l'aide de la théorie des caractères, des représentations des groupes finis, dont les résultats principaux sont ensuite étendus aux groupes compacts en utilisant l'intégrale de Haar.
Dans la suite du cours, la notion d'algèbre de Lie est introduite, celle de groupe de Lie est étudiée en se limitant au cas des groupes de Lie linéaires, et les propriétés essentielles liant groupes et algèbres de Lie sont exposées.
Les exemples fondamentaux pour la physique quantique, le groupe des rotations et le groupe spécial unitaire en dimension 2, sont étudiés en détails, leurs représentations irréductibles sont déterminées, et un chapitre traite des harmoniques sphériques.
Enfin, on aborde sur des exemples l'étude des représentations du groupe spécial unitaire en dimension 3, introduisant les notions de racines et de poids, et l'on montre que la théorie des quarks apparaît comme conséquence des propriétés mathématiques du groupe de symétries.Note de contenu : Généralités sur les groupes
Représentations des groupes finis
Représentations des groupes compacts
Groupes et algèbres de Lie
Les groupes de Lie SU(2) et SO(3)
Les représentations de SU(2) et SO(3)
Les harmoniques sphériques
Les représentations de SU(3) et les quarks
Problèmes corrigésExemplaires
Code-barres Cote Support Localisation Section Disponibilité FS2012/0179-3 512.55 KOS Ouvrage Bibliothèque de la Faculté des Sciences Exactes et Informatique Mathématique Disponible Groupes et symétries / Yvette Kosmann-Schwarzbach
Titre : Groupes et symétries : Groupes finis, groupes et algèbres de lie, représentations Type de document : texte imprimé Auteurs : Yvette Kosmann-Schwarzbach, Auteur Mention d'édition : 2ed Editeur : Paris : École polytechnique : Ellipses Année de publication : 2010 Importance : 216p Présentation : couv.ill Format : 17*24cm ISBN/ISSN/EAN : 978-2-7302-1257-1 Prix : 22.90 euro Note générale : Index; Bibliogr.p(209.211) Langues : Français (fre) Mots-clés : Groupes symétries Index. décimale : 512.55 KOS Résumé : La théorie des représentations de groupes, utilisant algèbre, géométrie et analyse, possède de multiples applications aux sciences physiques, en cristallographie, chimie, physique atomique et subatomique, ainsi que dans les théories de champ.
Ce livre est une introduction à cette théorie, à l'usage des étudiants de mathématiques et de physique. Il s'adresse à des lecteurs ayant les connaissances d'algèbre linéaire du premier cycle universitaire. Des exercices pour chaque chapitre et des problèmes corrigés complètent le cours.
L'objet de ce livre est de donner une première vue d'ensemble sur les groupes de symétries et leurs représentations.
On y trouvera l'étude, à l'aide de la théorie des caractères, des représentations des groupes finis, dont les résultats principaux sont ensuite étendus aux groupes compacts en utilisant l'intégrale de Haar.
Dans la suite du cours, la notion d'algèbre de Lie est introduite, celle de groupe de Lie est étudiée en se limitant au cas des groupes de Lie linéaires, et les propriétés essentielles liant groupes et algèbres de Lie sont exposées.
Les exemples fondamentaux pour la physique quantique, le groupe des rotations et le groupe spécial unitaire en dimension 2, sont étudiés en détails, leurs représentations irréductibles sont déterminées, et un chapitre traite des harmoniques sphériques.
Enfin, on aborde sur des exemples l'étude des représentations du groupe spécial unitaire en dimension 3, introduisant les notions de racines et de poids, et l'on montre que la théorie des quarks apparaît comme conséquence des propriétés mathématiques du groupe de symétries.Note de contenu : énéralités sur les groupes
Représentations des groupes finis
Représentations des groupes compacts
Groupes et algèbres de Lie
Les groupes de Lie SU(2) et SO(3)
Les représentations de SU(2) et SO(3)
Les harmoniques sphériques
Les représentations de SU(3) et les quarks
Problèmes corrigésGroupes et symétries : Groupes finis, groupes et algèbres de lie, représentations [texte imprimé] / Yvette Kosmann-Schwarzbach, Auteur . - 2ed . - [S.l.] : Paris : École polytechnique : Ellipses, 2010 . - 216p : couv.ill ; 17*24cm.
ISBN : 978-2-7302-1257-1 : 22.90 euro
Index; Bibliogr.p(209.211)
Langues : Français (fre)
Mots-clés : Groupes symétries Index. décimale : 512.55 KOS Résumé : La théorie des représentations de groupes, utilisant algèbre, géométrie et analyse, possède de multiples applications aux sciences physiques, en cristallographie, chimie, physique atomique et subatomique, ainsi que dans les théories de champ.
Ce livre est une introduction à cette théorie, à l'usage des étudiants de mathématiques et de physique. Il s'adresse à des lecteurs ayant les connaissances d'algèbre linéaire du premier cycle universitaire. Des exercices pour chaque chapitre et des problèmes corrigés complètent le cours.
L'objet de ce livre est de donner une première vue d'ensemble sur les groupes de symétries et leurs représentations.
On y trouvera l'étude, à l'aide de la théorie des caractères, des représentations des groupes finis, dont les résultats principaux sont ensuite étendus aux groupes compacts en utilisant l'intégrale de Haar.
Dans la suite du cours, la notion d'algèbre de Lie est introduite, celle de groupe de Lie est étudiée en se limitant au cas des groupes de Lie linéaires, et les propriétés essentielles liant groupes et algèbres de Lie sont exposées.
Les exemples fondamentaux pour la physique quantique, le groupe des rotations et le groupe spécial unitaire en dimension 2, sont étudiés en détails, leurs représentations irréductibles sont déterminées, et un chapitre traite des harmoniques sphériques.
Enfin, on aborde sur des exemples l'étude des représentations du groupe spécial unitaire en dimension 3, introduisant les notions de racines et de poids, et l'on montre que la théorie des quarks apparaît comme conséquence des propriétés mathématiques du groupe de symétries.Note de contenu : énéralités sur les groupes
Représentations des groupes finis
Représentations des groupes compacts
Groupes et algèbres de Lie
Les groupes de Lie SU(2) et SO(3)
Les représentations de SU(2) et SO(3)
Les harmoniques sphériques
Les représentations de SU(3) et les quarks
Problèmes corrigésExemplaires
Code-barres Cote Support Localisation Section Disponibilité FS2012/0179-2 512.55 KOS Ouvrage Bibliothèque de la Faculté des Sciences Exactes et Informatique Mathématique Disponible