| Titre de série : | Analyse mathématique, 1 | | Titre : | Analyse mathématique. Volume 1, : Convergence, fonctions élémentaires | | Type de document : | texte imprimé | | Auteurs : | Roger Godement, Auteur | | Mention d'édition : | 2e édition revue et corrigée | | Editeur : | Berlin : Springer | | Année de publication : | 2001 | | Importance : | XX-458 p. | | Présentation : | ill. | | Format : | 24 x 16 cm | | ISBN/ISSN/EAN : | 978-3-540-42057-6 | | Prix : | 44.95 EUR | | Note générale : | Index | | Langues : | Français (fre) | | Mots-clés : | mathématiques analyse mathématique | | Index. décimale : | 378.5 GOD | | Résumé : | Ce livre soumettra certains esprits rigides à la torture. Il est mathématiquement excellent, comme peuvent s’y attendre tous ceux qui savent quelque chose de l’auteur, grand mathématicien et merveilleux enseignant. On a là une des meilleurs façon d’apprendre l’analyse. Mais on a beaucoup plus, de l’histoire des concepts et des mathématiciens. Et encore davantage : une réflexion engagée sur notre époque, le tout enchainé de la manière la plus naturelle. Un exemple, page 84 nous examinons la convergence des séries, et en particulier la divergence de la série harmonique. L’auteur montre que certains procédés peuvent être utilisés abusivement, si l’on considère comme s’étendant aux sommes infinies les procédés justifiés quand il s’agit de sommes finies. Il montre (page 85&86) un grand nombre de tels «dérapages» réalisés par différents membres de la famille Bernoulli, et par Euler. De là , il passe à une petite présentation de la glorieuse famille Bernoulli et commence à expliquer les raisons des exigences de rigueur en mathématiques (page 87).
Enfin, s’addressant au citoyen, il l’invite à réfléchir sur les conséquences de telles exigences de rigueur (tout ce qui n’est pas intégralement démontré est potentiellement faux, etc.) si elles devaient avoir droit de cité en politique ! Il développe son propos en prenant l’exemple de la course aux armement (pages 88, 89, 90&91) puis il revient à Euler et aux opérations algébriques sur les limites (pages 94) après uns assez brève allusion au problème de la fraude scientifique. En dehors du fait que l’engagement de Roger Godement est au minimum très respectable, cette façon d’écrire possède un grand avantage pour tout un chacun : l’ouvrage y gagne en lisibilité. Les considérations didactiques, historiques et politiques reposent le lecteur des équations, et, sans doute,réciproquement. |
Analyse mathématique, 1. Analyse mathématique. Volume 1, : Convergence, fonctions élémentaires [texte imprimé] / Roger Godement, Auteur . - 2e édition revue et corrigée . - Berlin : Springer, 2001 . - XX-458 p. : ill. ; 24 x 16 cm. ISBN : 978-3-540-42057-6 : 44.95 EUR Index Langues : Français ( fre) | Mots-clés : | mathématiques analyse mathématique | | Index. décimale : | 378.5 GOD | | Résumé : | Ce livre soumettra certains esprits rigides à la torture. Il est mathématiquement excellent, comme peuvent s’y attendre tous ceux qui savent quelque chose de l’auteur, grand mathématicien et merveilleux enseignant. On a là une des meilleurs façon d’apprendre l’analyse. Mais on a beaucoup plus, de l’histoire des concepts et des mathématiciens. Et encore davantage : une réflexion engagée sur notre époque, le tout enchainé de la manière la plus naturelle. Un exemple, page 84 nous examinons la convergence des séries, et en particulier la divergence de la série harmonique. L’auteur montre que certains procédés peuvent être utilisés abusivement, si l’on considère comme s’étendant aux sommes infinies les procédés justifiés quand il s’agit de sommes finies. Il montre (page 85&86) un grand nombre de tels «dérapages» réalisés par différents membres de la famille Bernoulli, et par Euler. De là , il passe à une petite présentation de la glorieuse famille Bernoulli et commence à expliquer les raisons des exigences de rigueur en mathématiques (page 87).
Enfin, s’addressant au citoyen, il l’invite à réfléchir sur les conséquences de telles exigences de rigueur (tout ce qui n’est pas intégralement démontré est potentiellement faux, etc.) si elles devaient avoir droit de cité en politique ! Il développe son propos en prenant l’exemple de la course aux armement (pages 88, 89, 90&91) puis il revient à Euler et aux opérations algébriques sur les limites (pages 94) après uns assez brève allusion au problème de la fraude scientifique. En dehors du fait que l’engagement de Roger Godement est au minimum très respectable, cette façon d’écrire possède un grand avantage pour tout un chacun : l’ouvrage y gagne en lisibilité. Les considérations didactiques, historiques et politiques reposent le lecteur des équations, et, sans doute,réciproquement. |
|  |